
www.it-ebooks.info

http://www.it-ebooks.info/

Less Web Development
Essentials

Use CSS preprocessing to streamline the development
and maintenance of your web applications

Bass Jobsen

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Less Web Development Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1170414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-146-5

www.packtpub.com

Cover Image by Faiz J. Fattohi (faizfattohi@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Bass Jobsen

Reviewers
Marcus Bointon

Simone Deponti

Austin Pickett

Commissioning Editor
Ashwin Nair

Acquisition Editor
Richard Harvey

Content Development Editor
Sruthi Kutty

Technical Editors
Kapil Hemnani

Faisal Siddiqui

Project Coordinator
Sageer Parkar

Proofreaders
Maria Gould

Paul Hindle

Indexer
Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

Copy Editor
Karuna Narayanan

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

Before you dive into this book, let me give you a little bit of background. In the
summer of 2009, I was writing CSS for a project of mine and had developed a habit
of questioning every piece of technology I used. I enjoyed CSS for the most part, but
one thing bothered me: I couldn't experiment like I wanted to. I was designing a lot
back then, and I strongly believed in designing directly in the browser. This meant
being able to change the overall tone and style of the page quickly to try different
ideas. With the usual way of organizing CSS, this can be difficult. You have to keep
classes small and "composable", shifting the burden to the HTML. CSS is great when
you need to translate an existing, final design to the Web. However, that's not how
things work very often. More and more designers are jumping straight into CSS,
closing the gap between design and implementation, and they need a tool that they
can use all the way through, from ideation to finished product.

I started thinking of workarounds such as separating colors from other properties
so that all classes that were of the same color would be defined together. However,
I wanted colors to depend on other colors; I wanted to describe the theme as
"relationships" between colors, not static values. I wanted to turn a knob and have
the page change from one look to another. This was plainly impossible with the CSS
of 2009. I looked for solutions in the form of preprocessors and found a few, but most
of them were doing too much; they were fixing things that weren't broken, such as
the core syntax of the language that I happened to like.

So, I decided to put something together that would do what I wanted; the first
version of Less was born. It was quickly apparent that I wasn't the only one looking
for something like this. The idea was simple, but it was a step in the right direction.

Five years later, looking back at this is interesting. If I had run into these problems
with the experience I have today, would I have followed the same path? I think
my intuition was correct, but never could I have predicted how difficult it is to
get something like this right. It's one thing to design something for yourself; it's
a completely different thing when it has to work for everyone. This has made me
appreciate the quality of the work that went into the CSS specification all the more,
as well as the working group's cautiousness in moving forward.

www.it-ebooks.info

http://www.it-ebooks.info/

It's important to remember that Less is an extension of CSS, and much of the power
of Less comes from its support for plain CSS. It's easy to forget when you have access
to all the extra capabilities. However, those who know when and how to use both
technologies will enjoy the greatest flexibility and control over their creations.

Alexis Sellier
@cloudhead
Creator of Less

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Bass Jobsen has been programming for the Web since 1995, from C to PHP,
always looking for the most accessible interfaces. He has a special interest in the
process between a designer and programmer. He believes that interfaces should
work independent of a device or browser. For these reasons, working with grids
and meta languages in designs makes him happy. He always looks forward to new
opportunities in the Semantic and Responsive Web.

He uses Less in his daily job for web design tasks and WordPress theme
development as well as other Twitter Bootstrap apps.

He is always happy to help you. He can be reached at http://stackoverflow.com/
users/1596547/bass-jobsen.

Currently, he writes a blog (http://bassjobsen.weblogs.fm/), programs
LBS for mobile devices (http://www.gizzing.nl), makes cool websites
(such as http://www.streetart.nl/), and counsels Jamedo Websites
(http://www.jamedowebsite.nl/) in setting up the technical environment
and requirements for their business.

You can also check out his Bootstrap WordPress Starters Theme (JBST) and other
projects at GitHub at https://github.com/bassjobsen.

"I choose a lazy person to do a hard job. Because a lazy person will find an easy way
to do it."

–Bill Gates

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

This book is for Colinda, Kiki, Dries, Wolf, and Leny.

Recently, I reviewed Getting Started with Zurb Foundation 4 by Andrew D. Patterson
and Learning Zurb Foundation by Kevin Horek. After finishing this book, I will start
writing Less Web Development Cookbook for Packt Publishing.

Although I have written many blogs and technical project requirements in the past
years, this is the first book I have written to be published. Writing this book wasn't
possible without the support of my family, Caroliene, and the people of Vivent.
Richard Harvey was a patient and excellent motivator and critical reader. Sruthi
Kutty helped me dot the i's and cross the t's. Finally, I will thank the reviewers of
this book, Simone Deponti, Austin Pickett, and Marcus Bointon, for their critical and
valuable suggestions, which make this book even better.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Marcus Bointon has been a Less committer for the last couple of years, having
developed a taste for Less during the early versions of Twitter Bootstrap. He has
a Bachelor's degree in Computer Science from the University of London and a
Master's degree from Loughborough University of Technology. He's been involved
in computing since 1981 and developing for the Web since 1993. He has extensive
experience in many development languages (mainly PHP), Linux and OpenBSD
server admin, MySQL database design and admin, e-mail infrastructure, network
design, and much more. He is the maintainer of the very popular PHPMailer e-mail
sending library.

Marcus is the co-founder and technical director of Synchromedia Limited,
a UK-based company behind the smartmessages.net e-mail marketing service,
and a UK partner for the 1CRM open source CRM system.

He lives with his wife and two kids in the French Alps, where he can indulge his
passion for skiing and mountain biking.

Simone Deponti is a web developer from Milan, Italy. He has eight years
of experience in the field, primarily in CMSes, and has contributed to some
open source projects, most notably the Plone CMS. He is also the author of a
small debugging tool for Less and FireLess, and he wrote the initial debugging
support in the Less compiler.

He works for Abstract, a web technology agency based in Italy and Germany, as
a developer and project manager. You can find him at events around the world,
focusing on Python, JavaScript, and CMSes.

www.it-ebooks.info

http://www.it-ebooks.info/

Austin Pickett is a freelance web developer based out of Boston, MA. He has
been interested in programming since he was a child and is never seen without a
computer nearby. As a self-taught designer and developer, he has worked with
several of his own clients to turn their websites or applications into a reality.

Austin has his own freelance career in which he works closely with clients to create
their applications. He has worked with a wide array of clients from The National
Academy of Best-selling Authors and vacation property owners to web design firms.

Thanks go out to my father, Shawn Pickett, for without him I would
have never been interested in computers, and to my best friend and
rival, Talasan Nicholson, for without him I would have no local
competition or a buddy to ping at 2 AM.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Improving Web Development with Less 9

Using CSS3 for styling your HTML 10
Using CSS Selectors to style your HTML 10
Specificity, Inheritance, and Cascade in CSS 11

How CSS specificity works 12
Building your layouts with flexible boxes 13

Compiling Less 14
Getting started with Less 15
Using the watch function for automatic reloading 17
Debugging your code 17

Example code used in this book 19
Your first layout in Less 20

Vendor-specific rules 21
Build rounded corners with border-radius 21

Preventing cross-browser issues with CSS resets 24
Creating background gradients 25

CSS transitions, transformations, and animations 27
Box-sizing 31
Server-side compiling 34

Compressing and minimizing your CSS 35
Graphical user interfaces 36

Summary 37
Chapter 2: Using Variables and Mixins 39

Comments 39
Nested comments 40
Special comments 40

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Variables 41
Organizing your files 42
Naming your variables 43
Using a variable 44
Organizing variables 45
The last declaration wins 46
Variable declaration is not static 48
Lazy loading 48

Escaping values 49
Mixins 50

Basic mixins 51
Parametric mixins 52

Default values 52
Naming and calling 53
Multiple parameters 54
More complex mixins for linear gradient backgrounds 55
Special variables – @arguments and @rest 58
Return values 60
Changing the behavior of a mixin 61

Switches 61
Argument matching 61
Guarded mixins 62
Using guards and argument matching to construct loops 64

The !important keyword 65
Summary 66

Chapter 3: Nested Rules, Operations, and Built-in Functions 67
The navigation structure 67
Nested rules 68

Mixins and classes 70
Variables 73
Classes and namespaces 73

Operating on numbers, colors, and variables 76
The & symbol 77
Property merging 81
Built-in functions 81

JavaScript 82
List functions 82
Using color functions 85
The darken() and lighten() functions 86
Color manipulation 87

Color operations 87

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Color blending with Less 88
Type functions 89

The box-shadow mixin 90
Summary 91

Chapter 4: Avoid Reinventing the Wheel 93
Revisiting background gradients 93

Unused code 94
Chrome's developer tools 94
Firebug CSS usage add-on 96

Testing your code 96
Understanding TDD 96
All about style guides 97

Building a style guide with StyleDocco 97
Testing your code with tdcss.js 99

Prebuilt mixins 100
Using single-line declarations for vendor-specific rules with
Less Elements 101
Less Hat – a comprehensive library of mixins 104
Using the 3L library of prebuilt mixins 105

SEO and HTML debugging 106
ClearLess – another library of prebuilt mixins 107
Using Preboot's prebuilt mixins for your project 109

Integrating other techniques into your projects using Less 110
Using iconic fonts 111
Retina.js 116

Summary 117
Chapter 5: Integrate Less in Your Own Projects 119

Importing CSS into Less 120
Using the @import rule 120

Migrating your project 122
Organizing your files 123
Converting CSS code to Less code 123

Media queries and responsive design 125
Making your layout fluid 125

Testing your layouts on a mobile phone 128
Coding first for mobile 128

Using grids in your designs and work flow 129
The role of CSS float in grids 129

Making your grid responsive 130
The role of the clearfix 132

Using a more semantic strategy 132

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Building your layouts with grid classes 133
Building nested grids 135
Alternative grids 136

Building your project with a responsive grid 137
Using Preboot's grid system 137

Using the grid mixins to build a semantic layout 141
Extending your grids 144

Adding grid classes for the small grid 145
Applying the small grid on your semantic code 148

Summary 149
Chapter 6: Bootstrap 3, WordPress, and Other Applications 151

Bootstrap 3 151
Working with Bootstrap's Less files 153

Building a Bootstrap project with Grunt 153
Compiling your Less files 155
Dive into Bootstrap's Less files 155
Creating a custom button with Less 156
Customizing Bootstrap's navbar with Less 158
Bootstrap classes and mixins 161
Theming Bootstrap with Less 162
The a11y theme for Bootstrap 163
Color schemes with 1pxdeep 163

Using Bootstrap's customizer to build your own version 164
Semantic UI – another Less framework 164

Automatic prefixing of vendor-specific rules 165
Other frameworks to build your grid with Less 166

Using the Golden Grid System to build your grids 166
The Semantic Grid System 167

WordPress and Less 167
Using the Roots theme with Less 168
JBST with a built-in Less compiler 168
The Semantic UI WordPress theme 170
WordPress plugins and Less 170

Theme WooCommerce with Less 171
The WP Less to CSS plugin 171

Alternative compilers for compiling your Less code 171
The Less.php compiler 171
The .less compiler for .NET apps 172
List of tools to develop Less 172

Summary 173
Index 175

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
After the introduction of HTML 4.01 in 1999, the Web changed fast. Many new
devices such as tablets and mobile phones saw the light of day. Mobile Internet
became faster, cheaper, and more stable. The W3C started the HTML5 working
group in 2007. In December 2012, W3C designated HTML5 as a candidate
recommendation. HTML5 works with CSS3. Today, all major browsers
(Chrome, Safari, Firefox, Opera, IE) offer HTML5 support.

The impact of CSS3 has been huge. Nowadays, CSS3 is not only used to style your
HTML documents, but CSS3 also plays an important role in the responsibility of
your designs. Last but not least, CSS3 extends CSS with features such as animations
and transitions.

We don't need external flash components for complex animation. Take a look at
http://www.hongkiat.com/blog/css3-animation-transition-demos/ or look
at the funny owl in the following screenshot:

The owl in the preceding screenshot has been built with HTML5 and CSS3 alone.
The live version can wink and look by pressing the buttons.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Responsive designs allow you to build one version of your website with only one
code base which functions well and looks good on different devices such as mobile
phones, tablets, and desktops. There won't be any technical reason to build different
mobile and desktop versions, as shown in the following screenshot:

With all this new stuff, the work of the CSS (or web) developer becomes more
complex. A web developer needs to know about complex CSS3, the difference
between browsers and devices, animations, and other style effects. Writing
correct and functional CSS code will be the first thing; keeping this code readable,
maintainable, and working on all major browsers will be the second thing. CSS
files grow and become untidy in the development and maintenance processes. CSS
doesn't have the ability to modify the existing values or reuse common styles. Also,
doing math or defining variables is not possible in CSS. This is where Less comes
into the frame.

Less (Leaner CSS) is a dynamic stylesheet language designed by Alexis Sellier.
Started in 2010, it is now maintained and extended by the Less core team. Less helps
you make your CSS code maintainable, reusable, and prevent code duplications.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

In this book, you will learn how to write, compile, and understand Less. We will
help you do faster and more cost-effective web development. You will get practical
tips to integrate Less in your current and new projects. After reading this book,
you will write clear and readable CSS3 with Less. Instead of spending your time
on debugging your complex CSS code for a specific device or browser, you can pay
more attention to your real design tasks.

Your clients will be happy with your advanced and stable designs. This will reduce
the development and maintenance time and hence the cost of designing.

Less extends CSS with functions and variables. In a semantic sense, valid CSS
is also valid Less. The initial versions of Less were written in Ruby; now, Less
is written in JavaScript.

Less is called a CSS precompiler. This means that the end product will be used for
production. The end product in this case will be valid, compact, and readable CSS
code. Besides, the precompiling Less code can also compile in real time. Less offers
server-side and client-side options to do this. Real-time client-side compilation via
LESS.js in a modern web browser makes testing easy. Server-side compilations offer
opportunities to build applications with Less as well as create dynamic CSS.

Also, others know the power of Less. Projects such as Twitter's Bootstrap and
Roots, a WordPress starter theme, both rely on Less. These projects build clear
and extendable frameworks with Less. You can't ignore this proof. Stop writing
cumbersome CSS with bugs and browser defects and learn about Less by reading
this book.

Less is open source and licensed under the Apache license. At the time of writing this
book, the latest version is 1.7. The source code of Less will be maintained on GitHub.
Everybody will be allowed to contribute to it. You can use Less free of charge.

What this book covers
Chapter 1, Improving Web Development with Less, shows how CSS3 brought advanced
functions such as gradients, transitions, and animations to web designers. It also
explains how, on the other hand, CSS code became more complex and difficult
to maintain. Less helps you make your CSS maintainable, reusable, and prevent
code duplications.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Chapter 2, Using Variables and Mixins, explains why variables allow you to specify
widely-used values in a single place and then reuse them throughout the style sheet,
thus making global changes as easy as changing one line of code. Mixins allow you
to embed all the properties of a class into another class by simply including the class
name as one of its properties. The chapter also explains what parametric mixins are
and how to use them.

Chapter 3, Nested Rules, Operations, and Built-in Functions, explains the use of nested
rules for making inheritance clear and for making shorter style sheets. The chapter
also explains how to create complex relationships between properties and how to
use the built-in functions of Less.

Chapter 4, Avoid Reinventing the Wheel, teaches you how Less code and mixins can
become complex because they handle different browsers and devices. The chapter
also explains prebuilt mixins and other sources that help you (re)use them.

Chapter 5, Integrate Less in Your Own Projects, teaches you how to organize your files
for new projects or get the projects you maintain ready for using Less.

Chapter 6, Bootstrap 3, WordPress, and Other Applications, explains what Bootstrap is
and shows the strength of using Less with Bootstrap. The chapter also teaches you
how to build web applications with Less or integrate it in your WordPress themes.

What you need for this book
To understand and get the full benefit of the contents of this book, we expect you
to have built a website with CSS previously. A basic understanding of CSS will be
required. Understanding CSS selectors and CSS precedence will help you get the
most out of this book. We will introduce these CSS aspects briefly in the first chapter
as well. Understanding the basics of using functions and parameters in functional
languages such as JavaScript will be valuable, but it is not required. Don't panic
if you know nothing about functions and parameters. This book contains clear
examples. Even without any (functional) programming knowledge you can learn
how to use Less, and this book will help you do this. The most important skill will
be the willingness to learn.

All chapters of this book contain examples and example code. Running and testing
these examples will help you develop your Less skills. You will need a modern web
browser such as Google Chrome or Mozilla Firefox to run these examples. Use any
preferred text or CSS editor to write your Less code.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Who this book is for
Every web designer who works with CSS and who wants to spend more time on
real designing tasks should read this book. It doesn't matter if you are a beginner
web designer or have used CSS for years; both will profit from reading this book
and will learn how to utilize Less. We also recommend this book for teachers and
students in modern web design and computer science. Less does not depend on a
platform, language, or CMS. If you use CSS, you can and will benefit from Less.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "Note that in this
case, an ID is a unique selector starting with #; the selector [id=] for the same HTML
element counts as an attribute."

A block of code is set as follows:

.box-shadow(@style, @c) when (iscolor(@c)) {
 -webkit-box-shadow: @style @c;
 -moz-box-shadow: @style @c;
 box-shadow: @style @c;
}
.box-shadow(@style, @alpha: 50%) when (isnumber(@alpha)) {
 .box-shadow(@style, rgba(0, 0, 0, @alpha));
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

.box-shadow(@style, @c) when (iscolor(@c)) {
 -webkit-box-shadow: @style @c;
 -moz-box-shadow: @style @c;
 box-shadow: @style @c;
}
.box-shadow(@style, @alpha: 50%) when (isnumber(@alpha)) {
 .box-shadow(@style, rgba(0, 0, 0, @alpha));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[6]

Any command-line input or output is written as follows:

lessc -c styles.less > styles.css

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
on the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com/. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support/ and register to
have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development
with Less

It is impossible to imagine modern web design without CSS. With CSS3, web designers
are able to rely on advanced functions such as gradients, transitions, and animations.
On the other hand, CSS code becomes more complex and difficult to maintain. Less is
a CSS preprocessor that extends CSS with modern programming-language concepts.
Less enables you to use variables, functions, operations, and even rule or selector
nesting while coding your CSS. Less helps you write CSS with the Don't Repeat
Yourself (DRY) principle. The DRY principle prevents you from repeating any
kind of information in your code.

This chapter will cover the following topics:

• Introduction to CSS3
• Compiling Less into CSS
• Vendor-specific rules
• CSS3 rounded corners, animations, and gradients
• Using box-sizing border-box
• Server-side compiling and using GUI

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[10]

Using CSS3 for styling your HTML
In web design, you will use HTML to describe the structure of your documents
and CSS language to describe their presentation, including fonts, colors, and layout.
The current standard HTML5 and CSS3 versions work on most modern browsers
and mobile devices. CSS3 extends the old CSS with other new selectors, text effects,
background gradients, and animations. The power of CSS3, the new functionalities,
and high acceptance on mobile devices using HTML5 and CSS3 make them the
standard for modern web design. The combination of HTML5 and CSS3 is ideal for
building responsive websites because of their high acceptance on mobile phones
(and other devices).

Together, HTML5 and CSS3 introduce many new features. You will be shown the
ones that are the most significant when learning about their concepts within this book.

Using CSS Selectors to style your HTML
With Less (and CSS), you can style your HTML code using selectors. CSS selectors
are patterns or names that identify which HTML elements of the web page should
be styled. CSS selectors play an important role in writing Less code.

For body p.article {color:red}, the selector here is body p.article. Selectors
don't refer exclusively to one element. They can point to more than one element and
different ones can refer to the same element. For instance, a single p selector refers to
all the p-elements, including the p-elements with a .article class. In the case of
conflicts, cascade and specificity determine which styles should be applied. When
writing Less code, we should keep the aforementioned rules in mind. Less makes it
easier to write complex CSS without changing how your website looks. It doesn't
introduce any limitations on your final CSS. With Less, you can edit well-structured
code instead of changing the effect of the final CSS.

CSS3 introduces many new and handy selectors. One of them is :nth-child(n),
which makes it possible to style, for example, every fourth paragraph's p tag in an
HTML document. Such selectors add powerful functions to CSS3. Now we are able
to perform operations with CSS alone, whereas, in the past we needed JavaScript
or hardcoded styles (or classes at the very least). Again, this is one of the reasons
to learn Less. Powerful selectors will make CSS more important, but CSS code also
becomes cumbersome and difficult to maintain. Less will prevent this problem in
CSS, even making complex code flexible and easy to maintain.

Please visit https://developer.mozilla.org/en-US/docs/
Web/CSS/Reference#Selectors for a complete list of CSS selectors.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Specificity, Inheritance, and Cascade in CSS
In most cases, many CSS styles can be applied on the same HTML element, but only
one of them will win. W3C specifications describe the rules for which CSS styles get
the most precedence and will ultimately be applied. You can find these specifications
in the following section.

The rules regarding the order of importance have not significantly changed with
CSS3. They are briefly mentioned to help you understand some of the common
pitfalls with Less/CSS and how to solve them. Sooner or later, you will be in a
situation where you're trying to apply a CSS style to an element, but its effect stays
invisible. You will reload, pull out your hair, and check for typos again and again,
but nothing will help. This is because in most of these cases, your style will be
overruled with another style that has a higher precedence.

The global rules for Cascade in CSS are as follows:

• Find all the CSS declarations that apply to the element and property
in question.

• Inline styles have the highest precedence, except for !important.
The !important statement in CSS is a keyword used to add weight to a
declaration. The !important statement is added at the end of a CSS property
value. After this, check who set the declaration; styles set by the author
get a higher precedence than the styles defined by the user or browser
(default). Default means the styles are set by the web browser, author styles
are defined by CSS in the web page, and user styles are set by the user via
the settings of his or her web browser. The importance of the user is higher
than the default, and the code with the !important statement (see Chapter 2,
Using Variables and Mixins for its meaning in Less) will always get the highest
precedence. Note that browsers such as Firefox have options to disable pages
in order to use other alternatives to user-defined fonts. Here, the user settings
overrule the CSS of the web page. This way of overruling the page settings is
not part of the CSS precedence unless they are set using !important.

• Calculate the specificity, which is discussed in the following section.
• If two or more rules have the same precedence and specificity, the one

declared last wins.

As a Less/CSS designer, you will be making use of the calculated CSS specificity in
most cases.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[12]

How CSS specificity works
Every CSS declaration gets a specificity, which will be calculated from the type of
declaration and the selectors used in its declaration. Inline styles will always get the
highest specificity and will always be applied (unless overwritten by the first two
Cascade rules). In practice, you should not use inline styles in many cases as it will
break the DRY principle. It will also disable you from changing your styles on a
centralized location only and will prevent you from using Less for styling.

An example of an inline style declaration is shown as follows:

<p style="color:#0000ff;">

After this, the number of IDs in the selector will be the next indicator to calculate
specificity. The #footer #leftcolumn {} selector has 2 IDs, the #footer {}
selector has 1 ID, and so on.

Note that in this case, an ID is a unique selector starting with #; the
selector [id=] for the same HTML element counts as an attribute. This
means that div.#unique {} has 1 ID and div[id="unique"] {}
has 0 IDs and 1 attribute.

If the number of IDs for two declarations is equal, the number of classes, pseudo
classes, and attributes of the selector will be of importance. Classes start with a dot.
For example, .row is a class. Pseudo classes, such as :hover and :after, start with a
colon, and attributes, of course, are href, alt, id, and so on.

The #footer a.alert:hover {} selector scores 2 (1 class and 1 pseudo class)
and the #footer div.right a.alert:hover {} selector scores 3 (2 classes
and 1 pseudo class).

If this value is equal for both declarations, we can start counting the elements and
pseudo elements. The latest variable will be defined with a double colon (::) .
Pseudo elements allow authors to refer to otherwise inaccessible information,
such as ::first-letter. The following example shows you how that works.

The #footer div a{} selector scores 2 (2 elements) and the #footer div p a {}
selector scores 3 (3 elements).

You should now know what to do when your style isn't directly applied. In most
cases, make your selector more specific to get your style applied. For instance, if
#header p{} doesn't work, then you can try adding a #header #subheader p{} ID,
a #header p.head{} class, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

When Cascade and !important rules do not give a conclusive answer, specificity
calculation seems to be a hard and time-consuming job. Although Less won't help
you here, tools such as Firebug (and other developer tools) can make the specificity
visible. An example using Firebug is shown in the following screenshot, where the
selector with the highest specificity is displayed at the top of the screen and the
overruled styles are struck out:

An example of specificity in Firebug

Building your layouts with flexible boxes
The Flexbox Layout (also called flexible boxes) is a new feature of CSS3. It is
extremely useful in creating responsive and flexible layouts. Flexbox provides the
ability to dynamically change the layout for different screen resolutions. It does not
use floats and contains margins that do not collapse with their content. Unfortunately,
major browsers do not offer full support for Flexbox layouts at this moment. We
focus on Flexbox due to its power, and as it is an important feature of CSS, we can
also produce and maintain it using Less. You can access a set of Less mixins for CSS3
Flexbox at https://gist.github.com/bassjobsen/8068034. You can use these
mixins to create Flexbox layouts with Less, without using duplicate code.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[14]

These mixins will not be explained in great detail now, but the following example
shows how Less reduces the code needed to create a flex container. Using CSS, you
might use the following code:

div#wrapper {
 display: -webkit-flex;
 display: -moz-flex;
 display: -ms-flexbox;
 display: -ms-flex;
 display: flex;
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com/. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support/ and register to have the files e-mailed directly to you.

However, if you use Less, the same effect can be produced by inserting the following
line of code:

div#wrapper { .flex-display; }

You can use Google Chrome to test your Flexbox layouts. At the time of writing
this book, Firefox and Internet Explorer IE11 also offered full or better support for
Flexbox layouts. Flexboxes have been mentioned because they have the potential
to play an important role in the future of web design. For now, they are beyond the
scope of this book. This book will focus on creating responsive and flexible layouts
with Less using CSS media queries and grids.

Please visit https://developer.mozilla.org/en-US/
docs/Web/Guide/CSS/Flexible_boxes for additional
information, examples, and browser compatibility.

Compiling Less
After delving into the theory of CSS, you can finally start using Less. As mentioned
earlier, it has the same syntax as CSS. This means any CSS code is, in fact, a valid
Less code too. With Less, you can produce CSS code that can be used to style your
website. The process used to make CSS from Less is called compiling, where you can
compile Less code via the server side or client side. The examples given in this book
will make use of client-side compiling. Client side, in this context, means loading the
code in a browser and compiling Less code into CSS code using resources from the
local machine. Client-side compiling is used in this book because it is the easiest way
to get started while being good enough for developing your Less skills.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

It is important to note that the results from client-side compiling serve
only for demonstration purposes. For production and especially when
considering the performance of an application, it is recommended that
you use server-side precompiling. Less bundles a compiler based on
Node.js, and many other GUI's are available to precompile your code.
These GUI's will be discussed towards the end of this chapter.

Getting started with Less
You can finally start using Less. The first thing you have to do is download Less from
http://www.lesscss.org/. In this book, Version 1.6 of less.js will be used. After
downloading it, an HTML5 document should be created. It should include less.js
and your very first Less file.

Please note that you can download the examples, including a copy of less.js,
from the support files for this chapter in the downloadable files for the book on
www.packtpub.com.

To start with, have a look at this plain yet well-structured HTML5 file:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">

 <title>Example code</title>
 <meta name="description" content="Example code">
 <meta name="author" content="Bass Jobsen">

 <link rel="stylesheet/less" type="text/css"
 href="less/styles.less" />
 <script src="less.js" type="text/javascript"></script>
</head>

<body>
<h1>Less makes me Happy!</h1>
</body>
</html>

As you can see, a Less file has been added to this document using the following code:

<link rel="stylesheet/less" type="text/css"
 href="less/styles.less" />

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[16]

When rel="stylesheet/less" is used, the code will be the same as for a style
sheet. After the Less file, you can call less.js using the following code:

<script src="less.js" type="text/javascript"></script>

In fact, that's all that you need to get started!

To keep things clear, html5shiv (which you can access at http://code.google.
com/p/html5shiv/) and Modernizr (which you can access at http://modernizr.
com/) have been ignored for now. These scripts add support and detection of new
CSS3 and HTML5 features for older browsers such as IE7 and IE8. It is expected that
you will be using a modern browser such as Mozilla Firefox, Google Chrome, or any
version of Internet Explorer beyond IE8. These will offer full support of HTML5,
CSS3, and media queries, which you will need when reading this book and doing
the exercises.

You already know you should only use less.js for development
and testing in most cases; there can still be use cases which do justice
to the client-side use of less.js in production. To support less.js
for older browsers, you could try es5-shim (https://github.com/
es-shims/es5-shim/).

Now, open http://localhost/index.html in your browser. You will see the Less
makes me Happy! header text in its default font and color. After this, you should
open less/styles.less in your favorite text editor. The syntax of Less and CSS
doesn't differ here, so you can enter the following code into this file:

h1{color:red;}

Following this, reload your browser. You should see the header text in red.

From the preceding code, h1 is the selector that selects the HTML H1 attribute in
your HTML. The color property has been set to red between the accolades. The
properties will then be applied onto your selectors, just like CSS does.

It is not necessary to have a web server that is running. Navigating
to index.html on your hard drive with your browser should be
enough. Unfortunately, this won't work for all browsers, so use
Mozilla Firefox in order to be sure. The examples in this book use
http://localhost/map/, but this can be replaced with something
similar to file:///map/ or c:\map\, depending on your situation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Using the watch function for automatic
reloading
The less.js file has a watch function, which checks your files for changes and
reloads your browser views when they are found. It is pretty simple to use. Execute
the following steps:

1. Add #!watch after the URL you want to open.
2. Add #!watch after index.html and then reload the browser window.
3. So, open http://localhost/index.html#!watch in your browser and start

editing your Less files. Your browser will reflect your changes without having
to reload.

4. Now open less/styles.less in your text editor. In this file, write
#h1{color:red;} and then save the file.

5. You should now navigate to your browser, which should show Less makes
me Happy! in red.

6. Rearrange your screen in order to see both the text editor and browser
together in the same window.

7. Furthermore, if you change red to blue in less/styles.less, you will see
that the browser tracks these changes and shows Less makes me Happy! in
blue once the file is saved.

Pretty cool, isn't it?

The examples in this code use color names instead of hexadecimal
values. For example, the code uses red instead of #ff0000. The
basic color names are converted to their hexadecimal value by less.js
and written to the CSS. In this book, named colors are always used.

Debugging your code
As we are only human, we are prone to making a mistake or a typo. It is
important to be able to see what you did wrong and debug your code. If your
Less file contains errors, it won't compile at all. So, one small typo breaks the
complete style of the document.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[18]

Debugging is also easy with less.js. To use debugging or allow less.js to display
errors, you can add the following line of code to your index.html:

 <link rel="stylesheet/less" type="text/css" href="less/styles.less"
/>
 <script type="text/javascript">less = { env: 'development' };</
script>
 <script src="less.js" type="text/javascript"></script>

As you can see, the line with less = { env: 'development' }; is new here. This
line contains less as a JavaScript variable used by less.js. In fact, this is a global
Less object used to parse some settings to less.js. The only setting that will be used
in this book is env: 'development'. For more settings, check out the following
website: http://lesscss.org/#client-side-usage-browser-options.

env: 'development' also prevents Less from caching. Less doesn't
cache files in the browser cache. Instead, files are cached in the browser's
local storage. If env is set to production, this caching could yield
unexpected results as the changed and saved files are not compiled.

To try this new setting, edit less/styles.less again and remove an accolade to
create an invalid syntax of the h1{color:red form and then save the file.

In your browser, you will see a page like the following screenshot:

An example of a Less parse error

Besides syntax errors, there will also be name errors that are displayed. In the case of
a name error, an undeclared function or variable would have been used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

It is possible to set other settings for debugging, either in the global Less object
or by appending the setting to the URL. For example, you can specify the
dumpLineNumbers setting by adding the following lines of code to your HTML file:

<script type="text/javascript">less = { env:
 'development',dumpLineNumbers: "mediaQuery"
 };</script>

Alternatively, you can add !dumpLineNumbers:mediaQuery to the URL. This setting
enables other tools to find the line number of the error in the Less source file. Setting
this option to mediaQuery makes error reporting available for the FireBug or Chrome
development tools. Similarly, setting this to comments achieves the same for tools
such as FireLess. For instance, using FireLess allows Firebug to display the original
Less filename and the line number of CSS styles generated by Less .

FireBug, Chrome development tools, or the default browser inspect the element
functions (which you can access by right-clicking on your browser screen) can also
be used to see and evaluate the compiled CSS. The CSS is displayed as inline CSS
wrapped inside a <style type="text/css" id="less:book-less-styles">
tag. In the example given in the following screenshot, you will see an ID with value
less:book-less-styles. The value of this ID have been automatically generated
by Less based on the path and name of the book/less/styles.less Less file:

Less-generated CSS styles

Example code used in this book
In this book, you will find many code examples. Unless explicitly mentioned, the
format of these examples always shows the Less code first, followed by the compiled
CSS code. For instance, you can write the following lines of code in Less:

mixin() {
color: green;
}
p {
.mixin();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[20]

This code will be compiled into the following CSS syntax :

p {
color: green;
}

Your first layout in Less
You must first open first.html (from the downloadable files for the book) in your
browser and then open less/first.less in your text editor. In your browser, you
will see a representation of a header, body, and footer.

As expected, less/first.less contains the Less code that will be converted into
valid CSS by the less.js compiler. Any error in this file will stop the compiler and
throw an error. Although the Less code shows some similarities to the plain CSS
code, the process described here totally differs from editing your CSS directly.

The following screenshot shows you how this layout will look when opened in your
web browser:

Your first layout in Less

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Vendor-specific rules
CSS3 introduced vendor-specific rules, which offer you the possibility of writing
some additional CSS applicable for only one browser. At first sight, this seems
the exact opposite of what you want. What you want is a set of standards and
practicalities that work the same with every browser and a standard set of HTML
and CSS which has the same effect and interpretation for every browser. These
vendor-specific rules are intended to help us reach this utopia. Vendor-specific rules
also provide us with early implementations of standard properties and alternative
syntax. Last but not least, these rules allow browsers to implement proprietary CSS
properties that would otherwise have no working standard (and may never actually
become the standard).

For these reasons, vendor-specific rules play an important role in many new features
of CSS3. For example, animation properties, border-radius, and box-shadow all
depend on vendor-specific rules.

Vendors use the following prefixes:

• WebKit: -webkit
• Firefox: -moz
• Opera: -o
• Internet Explorer: -ms

Build rounded corners with border-radius
Border-radius is a new CSS3 property which will make many web developers happy.
With border-radius, you can give HTML elements a rounded corner. In previous
years, many implementations of rounded corners using images and transparency
have been seen. However, these were inflexible (not fluid) and difficult to maintain.

Vendor-specific rules are required for implementation, and although rounded
corners can't be handled with a single line of code, its usage definitely makes
rounding corners a lot easier.

To give an element rounded corners with a radius of 10 pixels, you can use the CSS
code with vendor-specific rules as follows:

-webkit-border-radius: 10px;
-moz-border-radius: 10px;
border-radius: 10px;

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[22]

For rounded corners with different radii, use a list with values separated by
spaces: 10 px 5px 20px 15px;. The radii are given in the following order: top-left,
top-right, bottom-right, and bottom-left. By keeping these rules in mind, you will see
how Less can keep your code clean.

You can open roundedcorners.html from the download section of this chapter
in your browser, and open less/roundedcorners.less in your text editor. In
your browser, you will see a representation of a header, body, and footer with
rounded corners.

The CSS for the header in less/roundedcorners.less looks like the following code:

#header{
background-color: red;
-webkit-border-radius: 10px;
-moz-border-radius: 10px;
border-radius: 10px;
}

You can see that using vendor-specific rules, the corners have been created
with a radius of 10 pixels. If you were using CSS, you would have to repeat the
vendor-specific rules three times for the header, footer, and body. In order to change
these rules or add a vendor, you would also have to change the same code three
times. To begin with, you will perhaps think, "Why not group the selectors?", in a
fashion similar to the following code:

#header, #content, #footer{
-webkit-border-radius: 10px;
-moz-border-radius: 10;
border-radius: 10px;
}

The preceding code is syntactically correct in order to write CSS or Less code, but
as your code base grows, it won't be easy to maintain. Grouping selectors based on
properties makes no sense when reading and maintaining your code. Such constructs
will also introduce many duplicated and unstructured usages of the same selectors.

With Less, you are able to solve these problems efficiently. By creating a so-called
mixin, you can solve the issues mentioned earlier. For the border radius, you can
use the following code:

.roundedcornersmixin()
{
-webkit-border-radius: 10px;
-moz-border-radius: 10px;
border-radius: 10px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

To use this mixin, you will call it as a property for the selector using the
following code:

#header{
background-color: red;
.roundedcornersmixin();
}

The compiled CSS of this Less code will now be as follows:

#header{
background-color: red;
-webkit-border-radius: 10px;
-moz-border-radius: 10px;
border-radius: 10px;
}

Looking at the original code in the less/roundedcorners.less file, you can see that
the preceding code wouldn't be able to work for #content. The border radius for
the content is 20 pixels instead of 10 pixels, as used for the header and footer. Again,
Less helps us solve this efficiently. Mixins can be called with parameters in the same
way in which functions can be called in functional programming. This means that in
combination with a value and a reference for this value, mixins can be called in order
to set the properties. In this example, this will change to the following code:

.roundedcornersmixin(@radius: 10px){
-webkit-border-radius: @radius;
-moz-border-radius: @radius;
border-radius: @radius;
}

In the .roundedcornersmixin(@radius: 10px) mixin, @radius is our parameter,
and its default value will be 10px.

From this point onwards, mixins can be used in your code. The
.roundedcornersmixin(50px); statement will set the corners with a radius of 50px
and the .roundedcornersmixin(); statement will do the same with a radius of
10px (default).

Using this, you can rewrite less/roundedcorners.less so that it changes to the
following code:

/* mixins */
.roundedcornersmixin(@radius: 10px){
-webkit-border-radius: @radius;
-moz-border-radius: @radius;
border-radius: @radius;

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[24]

}
#header{
background-color: red;
.roundedcornersmixin();
}
#content{
background-color: white;
min-height: 300px;
.roundedcornersmixin(20px);
}
#footer{
background-color: navy;
.roundedcornersmixin();
}

The less/roundedcornersmixins.less file from the
downloads section contains a copy of this code. To use this, you
also have to change the reference in your HTML file to <link
rel="stylesheet/less" type="text/css" href="less/
groundedcornersmixins.less" />.

Note that this code leaves out the general styling of the div and body tags in the
HTML. These styles are only used to make the demo look good and do not actually
demonstrate Less in any useful manner.

After rewriting your Less code, reload your browser or watch it if you have applied
the #!watch trick. You will see that the output will be exactly the same. This shows
you how to get the same results with Less using a more efficiently structured code.

Preventing cross-browser issues with
CSS resets
When talking about cascade in CSS, there will no doubt be a mention of the browser
default settings getting a higher precedence than the author's preferred styling.
When writing Less code, you will overwrite the browser's default styling. In other
words, anything that you do not define will be assigned a default styling, which
is defined by the browser. This behavior plays a major role in many cross-browser
issues. To prevent these sorts of problems, you can perform a CSS reset. The most
famous browser reset is Eric Meyer's CSS Reset (accessible at http://meyerweb.
com/eric/tools/css/reset/).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

CSS resets overwrite the default styling rules of the browser and create a starting
point for styling. This starting point looks and acts the same on all (or most) browsers.
In this book, normalize.css v2 is used. Normalize.css is a modern, HTML5-ready
alternative to CSS resets and can be downloaded from http://necolas.github.io/
normalize.css/. It lets browsers render all elements more consistently and makes
them adhere to modern standards.

To use a CSS reset, you can make use of the @import directive of Less. With
@import, you can include other Less files in your main Less file. The syntax is
 @import "{filename}";. By default, the search path for the directives starts at the
directory of the main file. Although setting alternative search paths is possible (by
setting the path's variable of your Less environment), it will not be used in this book.

The example Less files in this book will contain @import "normalize.less"; in the
first few lines of the code. Again, you should note that normalize.less does contain
the CSS code. You should pay particular attention to the profits of this solution!

If you want to change or update the CSS reset, you will only have to replace one file.
If you have to manage or build more than one project, which most of you should be
doing, then you can simply reuse the complete reset code.

Creating background gradients
A new feature in CSS3 is the possibility of adding a gradient in the background color
of an element. This acts as a replacement for complex code and image fallbacks.

It is possible to define different types of gradient and use two or more colors. In the
following figure, you will see a background gradient of different colors:

A gradient example (from W3schools.com)

In the next example, you can use a linear gradient of two colors. The background
gradients use vendor-specific rules.

You can make use of the example code from the rounded corners example to add
gradients to it.

The first step is to copy or open less/gradient.less and add a new mixin at the
start of this file as shown in the following code:

/* Mixin */
.gradient (@start: black, @stop: white,@origin: left) {
 background-color: @start;

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[26]

 background-image: -webkit-linear-gradient(@origin, @start,
 @stop);
 background-image: -moz-linear-gradient(@origin, @start,
 @stop);
 background-image: -o-linear-gradient(@origin, @start, @stop);
 background-image: -ms-linear-gradient(@origin, @start, @stop);
 background-image: linear-gradient(@origin, @start, @stop);
}

This will create gradients from the left (@origin) to the right with colors from
@start to @stop. This mixin has default values.

IE9 (and its earlier versions) do not support gradients. A fallback can be added
by adding background-color: @start;, which will create a uniform colored
background for older browsers.

After adding the mixin to your code, you can call on it for our #header, #body, and
#footer selectors as shown in the following code:

#header{
background-color: red;
.roundedcornersmixin();
.gradient(red,lightred);
}
#content{
background-color: white;
min-height: 300px;
.roundedcornersmixin(20px);
.gradient();
}
#footer{
background-color: navy;
.roundedcornersmixin(20px);
.gradient(navy,lightblue);
}

For example, if you renamed the Less file to less/gradient.less, you would have
also had to change the reference in your HTML file to the following code:

<link rel="stylesheet/less" type="text/css"
 href="less/gradient.less" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

If you now load the HTML file in the browser, your results should be like the
following screenshot:

Gradients in the header, content, and footer from the example code

CSS transitions, transformations, and
animations
Another new feature in CSS3 is the presence of transitions, transformations, and
animations. These functions can replace the animated images, flash animations,
and JavaScripts in the existing or new web pages. The difference between transitions,
transforms, and animations isn't trivial. Animations are constructed with a range of
@keyframes, where each @keyframes handles different states of your element in time.
Transitions also describe the state of element between start and end. Transitions are
mostly triggered by CSS changes, such as a mouse over (hover) of an element.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[28]

To make things clear, it is important to keep in mind the button that is about to
be pressed. The button will have two states: pressed and not pressed. Without
transitions and animations, we are enabled to style these states only. The color of the
button is white, and its color becomes red when you hover the mouse over it. (In CSS
terms, its state becomes hovered by adding the :hover pseudo class.) In this case, the
transition describes how the hovered button becomes red. For example, the change in
color from white to red in two seconds (which makes it pink halfway) shows that the
start of the color change is slow and changes faster as time passes. Using animations
here enables us to describe the state of the button for every time interval between the
start and end. For example, you don't have to change the color from white to red, but
the change covers all the states, from white, blue, green, and finally to red.

Transformations change the position of an element and how it looks. They do not
depend on the state of the element. Some of the possible transformations are scaling,
translating (moving), and rotating.

In practice, we use a combination of animations, transformations, and/or transitions
in most situations. Also, in this case, vendor-specific rules will play an important role.

Now, a transformation will be added to our example.

Using the example code with rounded corners and gradients, copy the following
code to less/transition.less or open less/transition.less and add the
following code to the beginning of the file:

/* Mixin */
.transition (@prop: all, @time: 1s, @ease: linear) {
-webkit-transition: @prop @time @ease;
-moz-transition: @prop @time @ease;
-o-transition: @prop @time @ease;
-ms-transition: @prop @time @ease;
transition: @prop @time @ease;
}

This mixin has three variables; the first will be the property (@prop) that you will
change. This can be height, background-color, visibility, and so on. The default
value all shouldn't be used in the production code as this will have a negative effect
on performance. @time sets the duration in milliseconds or seconds with s appended
to it. The last variable, @ease, sets the transition-timing-function property. This
function describes the value of a property, given that a certain percentage of it has
been completed. The transition-timing-function property describes the completeness
of the transition as a function of time. Setting it to linear shows the effect with the
same speed from start to end, while ease starts slow and ends slow, having a higher
speed in the middle. The predefined functions are ease, linear, ease-in, ease-out,
ease-in-out, step-start, and step-end.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

Now, you can edit less/transition.less to use this mixin. You can set the
background color of the body when you hover over it. Note that you don't need to use
the transition to change the gradient color but rather change the background-color
attribute. You are using background-color because transition-duration doesn't
have a visible effect on the gradient. The code of the background-color transition is
as follows:

#content{
background-color: white;
min-height: 300px;
.roundedcornersmixin(20px);
.transition(background-color,5s);
}
#content:hover{
background-color: red;
}

If you renamed the Less file, for example, to less/transition.less, you would also
have to change the reference in your HTML file to the following code:

 <link rel="stylesheet/less" type="text/css"
 href="less/transition.less" />

If you load the HTML file in the browser, you will be able to see the results in the
browser. Move your mouse over the content and see it change from white to red
in 5 seconds.

Finally, a second example that rotates the header can be added. In this example,
you will use @keyframes. Using @keyframes will be complex. So, in this case,
you can define some vendor-specific rules and add these animation properties
to #header: as follows:

@-moz-keyframes spin { 100% { -moz-transform: rotate(360deg); } }
@-webkit-keyframes spin { 100% { -webkit-transform:
 rotate(360deg); } }
@keyframes spin { 100% { -webkit-transform: rotate(360deg);
 transform:rotate(360deg); } }
#header{
 -webkit-animation:spin 4s linear infinite;
 -moz-animation:spin 4s linear infinite;
 animation:spin 4s linear infinite;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[30]

You can add the preceding code to our example files or open less/keyframes.less.

If you renamed the Less file, for example, to less/keyframes.less, you also have to
change the reference in your HTML file to the following code:

 <link rel="stylesheet/less" type="text/css"
 href="less/keyframes.less" />

Now, load the HTML file in the browser and watch your results. Amazing, isn't
it? With a little bit of creative thinking, you will see the possibilities of creating a
rotating windmill or a winking owl using only CSS3. However, the first thing that
should be done is to explain the code used here in more detail. As mentioned earlier,
there are many cases in which you would make combinations of animations and
transformations. In this example, you also get to animate a transformation effect. To
understand what is going on, the code can be split into three parts.

The first part is @keyframes, shown in the following code, which describe the value
of the CSS properties (transformation in this case) as a function of the percentage of
the animation completeness:

@keyframes spin { 100% { -webkit-transform: rotate(360deg);
 transform:rotate(360deg); } }

These keyframes have been given the name reference spin, which is not a special
effect but only a chosen name. In the preceding example, a state of 100 percent
completeness is described. At this state, the animated element should have made
a rotation of 360 degrees.

This rotation is the second part that needs our attention. The transformation
describes the position or dimensions of an element in the space. In this example,
the position is described by the number of degrees of rotation around the axis,
360 degrees at 100 percent, 180 degrees at 50 percent, 90 degrees at 25 percent,
and so on.

The third part is the animation itself, described by: animation:spin 4s linear
infinite;. This is the shorthand notation of settings of the subproperties of the
animation property. In fact, you can write this as the following code, without the
vendor-specific rules:

animation-name: spin;
animation-duration: 4s;
animation-timing-function:linear;
animation-iteration-count: infinite;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

You can use these three parts to build a complete animation. After doing this, you
can extend it. For example, add an extra keyframe, which makes the time curve
nonlinear, as follows:

@keyframes spin {
50% { transform: rotate(10deg);}
100% {transform: rotate(360deg); }
 }

You can add a second property using background-color. Don't forget to remove the
gradient to see its effect. This is shown in the following code:

@-moz-keyframes spin {
50% { transform: rotate(10deg); background-color:green;}
100% { transform: rotate(360deg); }
 }
//.gradient(red,yellow);

You will have noticed that the complete profit of using Less isn't realized here.
You will have to write the @keyframes definition repeatedly due to its variable
animation name. In Chapter 4, Avoid Reinventing the Wheel, a solution will be
provided to you for this.

Unfortunately, browser support for transitions, transformations, and animations
is not great and varies between browsers. Google Chrome does not support CSS
3D transforms, Firefox lacks support for CSS Filters, and IE9 (and earlier versions)
don't support them at all. To solve this, many developers look to jQuery to support
their animations. The jQuery.animate() function allows us to change the CSS
properties of the elements using JavaScript. You can still use Less to set the initial
CSS. An alternative for this will be to use animate.css (which you can access at
https://github.com/daneden/animate.css); this cross-browser library of CSS
animations gets converted into Less code with a jQuery fallback.

Box-sizing
The box-sizing property is the one that sets the CSS-box model used for calculating
the dimensions of an element. In fact, box-sizing is not new in CSS, but nonetheless,
switching your code to box-sizing: border-box will make your work a lot easier.
When using the border-box settings, calculation of the width of an element includes
border width and padding. So, changing the border of padding won't break your
layouts. You can find a copy of the code used in this section in boxsizing.html from
the download files.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[32]

Nowadays, most web designs use a grid. Grids split your design into columns
of equal size. This helps you make things clear and build responsive interfaces.
Depending on the available screen size (or width), you can show your content and
navigation with a different representation of the same columns.

To handle different screen sizes, some parts of your website will have fluid width or
height. Other elements, such as borders, gutters, and the white space, should have
a fixed width. The combination of fluid widths as a percentage of the screen width
(or viewport) with fixed widths becomes complex. This complexity will be due to the
fact that browsers use different calculations for padding and margins of elements.

In order for you to see this, look at the following example. A container of 500 pixels
width has been created. Inside this container, you can add two rows and split the
second row into two parts of 50 percent (or half) width.

<div class="wrapper" style="width:300px;">
 <div style="background-color:red;width;100%;">1</div>
 <div style="background-
 color:green;width:50%;float:left;">2</div>
 <div style="background-
 color:blue;width:50%;float:right;">3</div>
</div>

This will now look like the following screenshot:

An HTML wrapper

The current structure doesn't show a problem until you add some padding, which
is used to construct some space or a border between the two columns on the second
row (numbers 2 and 3 in the image of the HTML wrapper). The padding and the
border will break our layout as follows:

<div class="wrapper" style="width:300px;">
<div style="background-color:red;width:100%;">1</div>
<div style="background-color:green;width:50%;float:left;border:5px
solid yellow;">2</div>
<div style="background-color:blue;width:50%;border:5px solid
yellow;float:right;">3</div>
</div>

<div class="wrapper" style="width:300px;">
<div style="background-color:red;width;100%;">1</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

<div style="background-color:green;float:left;width:50%;padding-
right:5px;"><div style="background-color:yellow;">2</div></div>
<div style="background-color:blue;width:50%;padding-
right:5px;float:right;">3</div>
</div>

Finally, the output of this code should look like the following screenshot:

A broken layout due to padding and borders

A similar action can be performed, except that the wrappers can be wrapped inside
an extra wrapper. The box-sizing: border-box; declaration can then be applied
to this. Now, the results should look like the following screenshot:

A layout with box-sizing: border-box

As you can see, the padding and borders are subtracted by 50 percent from
the parent. This will make the calculation a lot easier. Of course, you can do the
calculating yourself once the parent container wrapper has a fixed width. If the
parent has 300 pixels, then 50 percent of this will be 150 pixels. Taking away the
padding and the width of the border will give you the fixed size of a column. This
won't work when your parent has a fluid width (the percentage of the viewport).
Fluid layouts change their width with the width of the screen. If your screen becomes
smaller, then all the elements become smaller too and the percentage stays equal. By
doing calculations for all the possible screen sizes to find the real size of a column
that allows all of your elements to align, you will quickly find this to be a long,
challenging, and arduous process.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[34]

For these reasons, you should make use of box-sizing: border-box; for all
the examples in this book. Please note that box-sizing has to also be defined by
vendor-specific rules as follows:

-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
box-sizing: border-box;

In this example, the Less code will be as follows:

// Box sizing mixin
.box-sizing(@boxmodel) {
 -webkit-box-sizing: @boxmodel;
 -moz-box-sizing: @boxmodel;
 box-sizing: @boxmodel;
}
// Reset the box-sizing
*,
*:before,
*:after {
 .box-sizing(border-box);
}

This code has been added into a separate file called boxsizing.less.
From now on, the basics of our Less files will now contain the following
code:

@import: "normalize.less";
@import: "boxsizing.less";

In the following chapters, you will learn more about organizing your Less code
into files.

Server-side compiling
You have taken the first few steps towards Less development already. As explained
earlier, client-side compiling has been used. However, client-side compiling with
less.js shouldn't be used on real websites. This is because despite making your
development easy and fast, compiling your Less files for every page request (or in
fact, initial page load per user) will actually slow down your website.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[35]

For the production environment, it is required that you compile your files and
serve the final CSS file to the browser. The term server side can be somewhat
misleading. Server side in this context means a compiled CSS code is sent to the
client's browser instead of Less code, which has to be compiled in the client's browser
by less.js before it is shown. You should precompile your Less code. By copying and
pasting the results of less.js to a file and including this as a CSS file in your HTML
files, you should have the same effect, except that your CSS is not minimized.

Less bundles a command-line compiler. Installing and using it is simple using the
following command:

 >> npm install -g less

 >> lessc styles.less styles.css

The package manager for the Node JavaScript platform is npm. Node enables you to
run Java scripts without a browser. Node and npm run on Windows, Mac OS X, and
other Unix/*nix machines. You will find the Node.js source code or a prebuilt installer
for your platform by visiting http://nodejs.org/download/. To install npm, please
read the instructions in the README file by visiting https://www.npmjs.org/doc/
README.html.

Use the –help function to get a list of options you can use with the following
command-line compiler:

 >> lessc –help

lessc styles.less styles.css compiles styles.less to styles.css. The links to
styles.css in your HTML after successfully compiling it are then shown as follows:

<link rel="stylesheet/css" type="text/css" href="styles.css">

Compressing and minimizing your CSS
After compilation, the CSS code is clean and readable. When taking this code
into production, you have to compress and minimize it in order to increase the
loading speed and save on the bandwidth as well. The basic steps for compressing
and minimizing the CSS code are removing comments, white spaces, and other
unnecessary code. The results won't be easy to be read by a human, but this doesn't
matter because you can use the Less files to update or modify the CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Web Development with Less

[36]

The Less command-line compiler has two options for compressing and minimizing.
The first option (-x or –yui-compress) uses the YUI CSS Compressor (which you
can access at http://yui.github.io/yuicompressor/css.html) and the second
option (--clean-css) uses clean-css (which you can access at https://github.com/
GoalSmashers/clean-css). You cannot use both options together. Clean-css claims
to be faster, and until recently, you would not have found much difference in the
compression. By compiling keyframes.less from the previous example, including
normalize.less and boxsizing.less, the result will have a size of 4377 bytes. With
clean-css, this drops to 3516 bytes, whilst YUI gives 3538 bytes. Since Version 1.5.0 of
Less, clean-css is the compiler's default option.

Graphical user interfaces
Some of you will prefer a Graphical User Interface (GUI) instead of command-line
compiling. There are many GUIs available for different platforms in order to edit and
compile your Less code. All of them cannot be mentioned here. Instead, the following
is a list of the most positive noticeable ones:

• WinLess is a Windows GUI for less.js.
• SimpLESS is a cross-platform editor and compiler with many functions,

including the automatic addintion of vendor-specific rules to your code.
• CodeKIT is a GUI for Mac (OS X). It compiles many languages including Less.

It includes optimizations and browser previews.
• The last one mentioned is Crunch! Crunch! is also a cross-platform compiler

and editor.

When choosing a GUI for Less development, always check which version of less.js
it uses. Some GUI's are built on older versions of less.js and don't support the
latest features.

Web developers using Visual Studio should check out Web Essentials. Web
Essentials extends Visual Studio with a lot of new features, including Less. Also,
other IDEs such as PHPStorm have built-in Less compilers. There is a Less plugin
for Eclipse also.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[37]

Summary
In this chapter, you refreshed and extended your knowledge about CSS3. You
learned how to compile your Less code on the client side. Furthermore, you have
written the code that allows you to have rounded corners, gradients, and animations
in Less, so you can now witness the profits of using Less and take the crucial initial
steps to organize and plan your new projects. You witnessed why you would want
to use CSS resets, how to compile these into Less code, as well as how the box-sizing
border-box can make your job easier. You also saw what a mixin is, how to use it,
and how you can import a Less file with the @import directive. Last but not least,
you have learned what server-side compiling is and how to use GUIs.

In the next chapter, you will learn how to use variables in Less and how to build and
use complex mixins.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins
In this chapter, you will study Less in more detail, where you will learn more
about variables and mixins. Variables in Less can be reused anywhere in the code.
Although they are often defined in a single place, they can also be overwritten
elsewhere in the code. They are used to define commonly used values that can
be edited only once at a single place. Based on the Don't Repeat Yourself (DRY)
principle, commonly used values will help you build websites that are easier to
maintain. Mixins are used to set the properties of a class. They bundle tasks in a
single line of code and are also reusable. You will learn how to create, use, and
reuse them in your project and write better CSS without code duplications.

This chapter will cover the following topics:

• Commenting on your code
• Using variables
• Escaping values
• Using mixins

Comments
Comments make your code clear and readable for others. It is important that you
are able to understand them clearly. That is why this chapter starts with some notes
and examples of comments.

Don't be sparse with your comments when keeping the file size,
download time, and performance in mind. In the process of compiling
and minimizing your final CSS code, comments and other layout
structures will be effectively removed. You can add comments for
understanding and readability wherever needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[40]

In Less, you can add comments in the same way as you did while writing the
CSS code. Comment lines are placed between /* */. Less also allows single-line
comments that start with //.

Using Less, you will conserve these comments in the final style sheet apart from
the single-line comments, which are not printed. Minimizers will remove these
comments in your final compiled style sheet. An example of this can be seen in
the following code:

/* comments by Bass
.mixins() { ~"this mixin is commented out"; }
*/

Nested comments
Although Less, like PHP or JavaScript, doesn't allow nested comments, single-line
comments that start with // are allowed and can be mixed with the normal comment
syntax. This is shown in the following code snippet:

/*
//commented out
*/

Special comments
Minimizers define a special comment syntax, sometimes to allow an important
comment, such as a license notice, to be included in the minimized output as well.
You can use this syntax to write some copyright notices at the top of your style
sheet. Using clean CSS and the default minimizer of the clean-css command-line
compiler of Less, you should place this important command between /*! !*/, as
shown in the following example code:

 /*!
very important comment!
 !*/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Variables
Variables in Less help you keep your files organized and easy to maintain. They
allow you to specify widely-used values in a single place and then reuse them
throughout your Less code. The properties of the final style sheet can be set with
variables. So, imagine that you don't have to search for every declaration of a specific
color or value in your style sheets any more. How does all of this work? Variables
will start with @ and have a name. Examples of such variables include @color,
@size, and @tree. To write the name, you are allowed to use any alphanumeric
character, underscores, and dashes. This means that @this-is-variable-name-
with-35-chars is a valid variable name.

Although alphanumeric characters, underscores, and dashes are used
in variable names in this book, the specifications allow you to use any
character, with a few exceptions. The specifications find their origin
in the CSS grammar (which you can view at http://www.w3.org/
TR/CSS21/grammar.html). Names starting with a dash are reserved
for vendor-specific rules, and a space is already used to separate class
names from each other. It is possible and allowed to use escaping,
which is very rare for (programming) languages. However, the
escaping of white spaces is not possible. NULL is also not allowed.

Unfortunately, the use of @ is ambiguous in Less. As you have seen in the first chapter,
parameters used by mixins also start with @. That's not all. As valid CSS code is also
valid Less code, there will be CSS media query declarations that also start with @. The
context will make it clear when @ is used to declare a variable. If the context is not
clear enough, the meaning of the @ will be explicitly mentioned in this book.

You can give a variable a value, which will be called a declaration. A value can
contain anything that is a valid value for a CSS property.

You can use a colon (:) to assign a value to a variable. A declaration ends with a
semicolon (;). The following examples will make this clear:

@width: 10px;
@color: blue;
@list: a b c d;
@csv-list: a, b, c, d;
@escaped-value: ~"dark@{color}";

After the declaration of a variable, you can use the variable anywhere in your
code to reference its value. This quality makes variables extremely powerful when
programming Less code. Take a look at the example code for this chapter from the
downloadable code for this book to get a better understanding.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[42]

Organizing your files
As you have seen, you only have to declare a variable once to use it anywhere in the
code. So, to make changes to the variables, you also have to change them only once.
The example code defines the variables in a separate file called less/variables.
less. It is a great practice to organize your files. If you want to change something,
you now know where to look.

Recalling CSS reset and border-boxing from the first chapter, your main Less file
will now look like the following code snippet:

@import "less/normalize.less";
@import "less/boxsizing.less";
@import "less/mixins.less";
@import "less/variables.less";

Here, the @import statement imports code from the file to the main Less file. Filenames
are written between quotes and followed by a semicolon. Besides the Less files, you can
also import plain CSS files, which will not be processed for the Less directives; this will
be explained in more detail in Chapter 5, Integrating Less in Your Own Projects.

Now you should open http://localhost/index.html in your browser. You will
see a straightforward website layout, which contains a header, content block, side
menu, and three-columned footer, as shown in the following screenshot. All the
layout items have blue accents. After this, open less/variables.less in your
favorite text editor.

A layout built with Less

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

Curious as you are, I bet you have also opened the other files. Don't be scared by the
complexity of the code in them. This code and layout have been used to show the
power of widely-used variables that have been defined in a single place. This can be
better demonstrated with more realistic and complex examples than by just a few
lines of code. Rest assured that all the other code will explain this to you soon. Before
you know it, all this code will look very familiar to you.

Firstly, change darkblue to darkgreen in the @darkcolor: darkgreen; line in the
less/variables.less file, which you opened earlier. After this, watch the results in
your browser. Reload your browser if you still haven't used the #!watch function.

The layout will now be shown in green. If you weren't convinced earlier, you should
be now. In practice, you won't change a complete website using a single line of code,
but this example shows what Less can do to make your work easier.

Imagine that you have finished your dark-green website's job, and you show it to
your boss. "Well done!", he says, but he also tells you, "I know I asked for green,
but if you don't mind, I prefer a red website". For now, you smile and simply
change darkgreen to darkred in the @darkcolor: darkgreen; line in the
less/variables.less file.

As you have seen, your HTML is clean and straightforward, with no inline CSS or
even class names. There is now a new concern; you will have to name, declare, and
save your variables in a smart and proper fashion. When doing this, be consistent
and clear as it is of high importance. When organizing your variables, follow the
same strategy at all times, using name conventions and comments where the context
isn't clear enough. Please keep in mind that someone should be able to take over
your work without any further instructions at any moment. To achieve this, you will
have to explore the variables at deeper levels.

Naming your variables
You should always give your variables meaningful and descriptive names. Variable
names such as @a1 and @a2 will get compiled but have not been chosen well. When
the number of variables grows or when you have to change something quite deep in
the code, you will not know or remember what @a2 has been used for. You will have
to look up its context to find its use in your Less files or even worse, inspect your
HTML elements to find which CSS rules are applied on it in order to find the Less
context. In this unfortunate case, you will be back to square one.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[44]

Good examples of names include @nav-tabs-active-link-hover-border-color
and @dark-color. These variables are meaningful and descriptive because their
names try to describe their function or usage rather than their value. This process of
naming will also be called semantic naming. So, in this case, @dark-color is a better
choice than @red, and in some cases, you can be more specific by using @brand-color.
brand. This could describe some house style color of a website, like in the previous
case. If the house style color changes from dark red to light green, then @brand-color:
lightgreen; still makes sense. However, @dark-color: lightgreen; or @red:
lightgreen; just doesn't quite say it.

As you can see, hyphens are used to separate words in variable names. These names
are called hyphenated names. You should use lower case letters. There aren't any
strict rules to use hyphenated names; the so-called CamelCase is used and is familiar
to many programmers as an acceptable alternative. In CamelCase, you will use
something like @navTabsActiveLinkHoverBorderColor and @darkColor. Both
hyphenated and CamelCase names improve readability.

When writing CSS and HTML code, you are using hyphenated two-word
terms and lowercase class names, ID's, and font names, among other
things. These rules are not always strict, and they are not followed by
convention. This book follows this convention when writing Less code,
and it therefore makes use of hyphenated names.

Whether you prefer CamelCase or hyphenated names doesn't matter greatly. When
you have chosen either CamelCase or hyphenated names, it is important to be
consistent and use the same way of naming throughout your Less files.

When you perform calculations, a hyphenated name may cause
some trouble. You will need some extra spacing to solve this.
When you declare @value minus one, @value-1 will be read as
a single variable instead of @value -1.

Using a variable
If your project grows, it will be impossible to add a variable for every CSS property
value, so you will have to choose which values should be a variable or which should
not. There are no strict rules for this process. You will find some clear guidance to
make these choices in the following sections.

You should first try to find property values that are used more than once in your
code. Repeated usage is suitable when creating variables. The @dark-color variable
in the example code is a good example of such a property value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

Second, you can make variables of properties that are used for customization settings.
The @basic-width variable in the example code is an example of such a property.

Finally, you should consider creating variables for reusable components. Looking at
our example, you could reuse the header in other projects. To make this possible, you
should create a new less/header.less file and import this to your main file with
the following line of code:

@import "less/header.less";

Organizing variables
To make components reusable, you can create Less files for each component or
function and arrange the variables to suit these files. To demonstrate this, split the
example code into less/header.less, less/content.less and less/footer.less.

The less/header.less file will now contain the following code:

header
{
 background-color: @header-dark-color;
 min-height: @header-height;
 padding: 10px;

 .center-content;
 .border-radius(15px);
 .box-shadow(0 0 10px, 70%);

 h1 {color: @header-light-color;}
 }

Notice that @dark-color has been renamed as @header-dark-color. Open
http://localhost/project.html in your browser and the less/project.less
file in the text editor to see all the changes and their effects.

Now, include the less/header.less file in your less/project.less file
using @import "header.less"; and create a header section in the less/
variablesproject.less file as follows:

/* header */
@header-dark-color: @dark-color;
@header-light-color: @light-color;
@header-height: 75px;

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[46]

The @header-dark-color: @dark-color; statement assigns the @dark-color;
value to @header-dark-color. After this, you will do the same for less/content.
less and less/footer.less. As you can see, http://localhost/project.html
still looks the same after your changes.

Now, open less/variablesproject.less in your text editor and change the footer
section to the following code:

/* footer */
@footer-dark-color: darkgreen;
@footer-light-color: lightgreen;
@footer-height: 100px;
@footer-gutter: 10px;

In your browser, you will now see the layout with a green footer.

The last declaration wins
In the first chapter, you read about CSS cascade, where the last rule said that
the value declared last will win if the output of the other rules is equal. Less uses
the same strategy, where the last declaration of a variable will be used in all the
preceding code. In the following code, you will see that the property value is set
to 2 in accordance with the last declaration wins rule:

@value: 1;
.class{
property: @value;
}
@value: 2;

Compiles into:
.class{

property: 2;

}

In fact, Less first reads all of your code. When the value of a variable is used, it is
only the last-assigned or last-read value that is actually used. The fact that the last
declaration wins will only affect the declaration defined in the same scope.

In most programming languages, the scope is defined by a part of the code that the
compiler can run independent of the other code. Functions and classes can have their
own scope. In Less, mixins have their own scope. Mixins will be discussed in more
detail later on in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

The following code shows you that the property value is set to 3 in accordance with
the value declared inside the scope of the mixin:

@value: 1;
.mixin(){
 @value: 3;
 property: @value;
}
.class{
 .mixin;
}
@value: 2;Compiles to:
.class{
property: 3;
}

The preceding code means you can't change variables during the compilation.
This makes these variables theoretical constants. Compare this with a definition
of the mathematical value of pi in your code, which is always the same. You will
define PI only once, where PI = 3.14 will be in your code and will remain constant
when your code is run. For this reason, variables should be declared only once.

Redeclaration of variables and the rule that the last declaration wins will be used in
the customization of many Less projects and code.

To demonstrate redeclaration, create a new less/customized.less file and write
the following code into it:

@import "styles.less";
@dark-color: black;
@basic-width: 940px;

Reference the customized.less file in the customized.html file as follows:

<link rel="stylesheet/less" type="text/css"
 href="less/customized.less" />

Now load the customized.html file in your browser. As you see, you have created a
customized version of your layout with only three lines of code!

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[48]

Variable declaration is not static
Although variables act like constants, their declaration is not necessarily unchangeable
or static. First, you can assign a value of one variable to another, as shown in the
following code:

@var2 : 1;
@var1 : @var2;
@var2 : 3;

The value of @var1 is now 3 and not 1. Please understand that you don't need to
create some kind of reference as the rule that the last declaration wins is applied
here. The @var1 variable will get the value of the last-declared @var2 variable.

In the example code, you will also find the @light-color: lighten(@dark-
color,40%); declaration. The lighten() function is a so-called built-in function of
Less. Chapter 3, Nested Rules, Operations, and Built-in Functions, will cover the built-in
functions. The use of the lighten() function sets @light-color to a calculated color
value based on @dark-color. You should also pay attention to the last declaration of
@dark-color, as this is used for color calculation.

Dynamic declaration of variable values gives flexibility, but keep in mind that you
should only declare a value once and you can't change it after the declaration.

Lazy loading
Before you switch from variables to mixins, you should first know about lazy
loading. In computer programming, this means to defer the initialization of an object
until the point at which it is needed. Lazy loading is the opposite of eager loading.
For Less, this means the variables are lazy loaded and do not have to be declared
before they are actually used.

It is all very well trying to understand the theoretical aspects, but now, it is time to
understand how they work in practice through the following example:

.class {
 property: @var;
}
@var: 2;

The preceding code gets compiled into the following code:

.class {
 property: 2;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

Escaping values
Less is an extension of CSS. This means that Less gives an error when it comes
across invalid CSS or evaluates a valid CSS during compilation. Some browsers
define properties with an invalid CSS. Well-known examples will include something
such as property: ms:somefunction(). Some of these rules can be replaced by
vendor-specific rules. It is important to note that invalid property values won't get
compiled in Less.

A new function, calc(), in CSS3 is a native CSS way of doing simple math as a
replacement for a value of any length.

In both cases, Less won't give us the right value when we compile or import.

@aside-width: 80px;
.content {
width: calc(100% - @aside-width)
}

The preceding code gets compiled into the following code:

.content {
 width: calc(20%);
}

From the preceding code, @aside-width: 80px; is the declaration of a variable with
the name aside-width. This variable gets a value of 80 pixels. More information on
variables will be covered in the following sections. However, more importantly, now
the preceding result is wrong (or at least, not as expected) because the calc() function
should be evaluated during the rendering time. During the render time, the calc()
function has the ability to mix units, such as percentages and pixels. In the preceding
code, .content is assigned a width of 100% of the available space (in other words, all
of the available space) minus 80px (pixels).

Escaping the values will prevent these problems. In Less, you can escape values by
placing them between quotes ("") preceded by a tilde (~). So, in this example, you
should write width: ~"calc(100% - @{aside-width})".

Please note that the accolades are placed in aside-width's variable name, which
is called string interpolation. In the escaped values, anything between quotes
is used as it is, with almost no changes. The only exceptions here are the string
interpolated variables.

Strings are sequences of characters. In Less and CSS, values between quotes are
strings. Without escaping, Less compiles its strings into CSS strings.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[50]

For instance, width: "calc(100 – 80px)" doesn't make sense in CSS and neither
does width: calc(100% - @aside-width) because @aside-width has no meaning.

So, with escaping and string interpolation, you can start with the following
code snippet:

@aside-width: 80px;
.content{
 width: ~"calc(100% - @{aside-width});"
}

The preceding code will compile into the following code:

.content {
 width: calc(100% - 80px);
}

In the specific case of using the calc() function, the Less compiler
has a strict-math option (used since Version 1.4). This is used with
–strict-math=on in the command line or strictMath: true
when using JavaScript. When the strict-math option is turned on,
the width of calc(100% - @aside-width); will get compiled
into width: calc(100% - 80px);. Notice that there have been
many changes to this strict-math option during the development of
versions 1.6, 1.7, and 2.0.

Mixins
Mixins play an important role in Less. You saw mixins in the first chapter
when the rounded-corners example was discussed. Mixins take their naming
from object-oriented programming. They look like functions in functional
programming but in fact act like C macros. Mixins in Less allow you to embed
all the properties of a class into another class by simply including the class name
as one of its properties, as shown in the following code:

.mixin(){
 color: red;
 width: 300px;
 padding: 0 5px 10px 5px;
}
p{
.mixin();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

The preceding code will get compiled into the following code:

p{
 color: red;
 width: 300px;
 padding: 0 5px 10px 5px;
}

In the final CSS code used on the website, every <p> paragraph tag will be styled
with the properties defined in the mixin() function. The advantage will be that
you can apply the same mixin on different classes. As seen in the rounded-corners
example, you only have to declare the properties once.

Try opening less/mixins.less from the available downloadable files of this
chapter. In the examples of this book, all mixins are saved to a single file. In this file,
you can arrange your mixins based on their functions. Grouping them in a single file
prevents us from breaking the code when removing or replacing other functional
Less files. Your project contains an example in sidebar.less and content.less,
where both files make use of the border-radius mixin. If we now replace sidebar.
less, you won't break content.less. Of course, you also don't want to have the
same kind of mixins twice in your code.

The box-sizing mixin in less/boxsizing.less will be handled as a specific case.
The box-sizing mixin influences all elements, and you want to be able to replace the
box-sizing model in its entirety.

The less/mixins.less file contains four mixins, which will be discussed in
the following sections. The box-shadow and clearfix mixins also have complex
structures such as nesting, but these mixins will be explained in further detail
in the next chapter.

Basic mixins
You have seen the rounded-corners mixin already. A basic mixin looks like a
class definition in CSS. Mixins are called inside classes and give these classes
their properties.

In the example code in the less/mixins.less file, you will find the .center-content
mixin which sets the value of the margin property to 0 auto. This mixin is used to
center align the header, content wrapper, and the footer.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[52]

Note that these center-content mixins are not the one and only solution.
A general wrapper to center align the header, the content wrapper, and
the footer at once will also work for this example layout. The name of
this mixin can also be discussed. When you decide not to center the
content anymore, the name of this mixin will not make any sense.

Remove the margin: 0 auto; property, which in fact centers the content from the
mixin. You should then reload index.html in your browser to see the effect.

Parametric mixins
As mentioned earlier, mixins act as functions in functional programming, and so, as
functions, they can be parameterized. A parameter is a value used in combination with
mixins, with the parameter's name used as a reference to its value inside the mixin. The
following code shows you an example of the usage of a parametric mixin:

.mixin(@parameter){
 property: @parameter;
}
.class1 {.mixin(10);}
.class2 {.mixin(20);}

The preceding code gets compiled to the following code:

.class1 {
 property: 10;
}

.class2 {
 property: 20;
}

The preceding example shows how parameterization makes mixins very powerful.
They can be used and reused to set properties depending on input values.

Default values
The parameters have an optional default value, which can be defined with
.mixins(@parameter:defaultvalue);. To see how this works, you should consider
the border-radius mixin in the less/mixins.less file, as seen in the following code:

.border-radius(@radius: 10px)
{
 -webkit-border-radius: @radius;
 -moz-border-radius: @radius;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

 border-radius: @radius;
}

Note that the default value here is 10px.

Naming and calling
In this book, mixins have meaningful and descriptive names, and just like variable
names, these names are hyphenated. Using meaningful and descriptive names
for your mixins makes your code more readable for others and easier to maintain.
Parameters and variables both start with an @ sign. The context should make it clear
if it is a variable or mixin parameter that is being talked about.

To have a better understanding, consider the following code:

@defaulvalue-parameter1 :10;
.mixin(@parameter1: @defaulvalue-parameter1)
{
 property: @parameter1;
}
.class {
 .mixin
}

This code can be compiled into the following code:

.class{
 property: 10;
}

Note that @defaulvalue-parameter1 is a variable here.

The following code also illustrates the scope of a mixin:

@defaulvalue-parameter1 :10;
.mixin(@parameter1: @defaulvalue-parameter1){
 property: @parameter1;
}
.class {
 .mixin
}
 @parameter1 : 20;

This code can be compiled into the following code:

.class{
 property: 10;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[54]

Here, the last declaration of @parameter1 is outside the scope of the mixin, so the
property is still set to 10.

Multiple parameters
Multiple parameters for mixins can be separated by a comma or semicolon.
Functional programmers often use a comma as a separator. In Less, a semicolon is
preferred. A comma actually has an ambiguous role here, as they are not only used
to separate parameters but also to separate list items in a csv list.

The .mixin(a,b,c,d) call calls the mixin with four parameters and similarly the
.mixin(a;b;c;d) call does the same. Now, consider the case where you call the
mixin with the.mixin(a,b,c;d) call. Only two parameters are used here, and the first
parameter is a list of three items. If at least one semicolon is found in the parameter list,
then the only separator considered will be the semicolon. The following code shows
you the effect of adding an extra semicolon to the parameter list:

.mixin(@list){
 property: @list;
}
.class{ mixin(a,b,c,d;);}//see the extra semi-colon!

This code can be compiled into the following code:

.class{
 property: a, b, c, d;
}

Without this extra semicolon, you call a mixin with four parameters. In this
case, the compiler throws an error: RuntimeError: No matching definition
was found for .mixin(a, b, c, d). What you actually need is a mixin containing
.mixin(@a,@b,@c,@d).

In the preceding example, it has been made clear that mixins with the same name
are allowed in Less. When finding different mixins with the same name, the compiler
uses the mixins with the right number of parameters only or throws an error when
no matching mixin is found. This form of parametric matching can be compared with
method overloading, found in various programming languages.

If a mixin call matches more than one mixin, as shown in the following code, then all
the matching mixins are used by the compiler:

 .mixin(@a){
 property-a: @a;
}

.mixin(@b){

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

 property-b: @b;
}

class{
 .mixin(value);
}

This code gets compiled into the following code:

class {
 property-a: value;
 property-b: value;
}

More complex mixins for linear gradient
backgrounds
You now have enough theoretical knowledge to build more complex mixins. In this
example, you will add directive background gradients of three colors to the footer
columns of our layout.

The end result should look like the following screenshot:

Linear gradient backgrounds built with Less

These gradient backgrounds have been chosen because of their complexity and
well-documented changes over time. The final result will be a complex mixin, which
is definitely not perfect, but improves the result significantly. You can be sure that
you will have to change your gradient mixin from time to time because of the drop in
support for old browsers, new browsers, changing specifications, and new insights.
Refer to https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_
CSS_gradients for some more examples.

You can't prevent these necessary changes, but you can minimize the time spent
on keeping your mixins up to date. Less guarantees that all of your background
gradients are based on the same mixin defined in a single place.

At a basic level, background gradients in CSS are defined as images. For this reason,
they are applied on the background-image property.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[56]

In this book, gradients are set on the background-image property. Other examples
(elsewhere and perhaps in other books) will set them on the background property.
There is no difference in their definitions. CSS defines different properties for
backgrounds such as background-image, background-color, background-size,
and background-position. The background property is the shorthand for all of them
together. When you define the first value of the background property as an image, or
gradient in this case, all the other property values are set to their default value.

You start your mixin by making a list of the following requirements:

• You want a parameter to set the direction of your gradient, where you will
use degrees

• Your gradient will consist of three colors
• After this, you define a list of browsers and the browser version you have

to support

Now, you can define the first lines of your mixin as follows:

.backgroundgradient(@deg: 0deg; @start-color: green; @between-
 color:yellow; @end-color: red; @between:50%)
{
background-image: linear-gradient(@deg, @start-color, @between-
 color @between, @end-color);
}

One of the ways to illustrate how the gradient line of 45 degrees works. This was taken from:
http://dev.w3.org/csswg/css-images-3/, Copyright 2013 W3C, 11 September 2013

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

The background mixins have five parameters, which are as follows:

• The first parameter describes the direction in degrees. The number of
degrees gives the angle between the vertical and the gradient direction.
The description of the direction starts at the bottom. At the bottom, the
angle is 0 degrees and describes a gradient from bottom to top. Then the
angle goes clockwise to 90 degrees point that describes a gradient from
left to right, and so on.

• The next three parameters are the three colors of your gradient, which are the
default values set for it.

• The fifth and last parameter defines where the middle color has its real value.
The percentage here is a percentage of the width of the element that the
gradient is applied on. The first and last color has 0 and 100 by default.

Modern browsers, such as IE version 11, Firefox version 16+, Opera version 12.10+,
Safari version 7+, and Chrome version 26+, support these background-image
properties. For older browsers, vendor-specific rules have to be added. The first
problem here is that vendor-specific rules use a different way to define the angle. To
compensate for this, you can use a correction of 90 degrees using the following code:

.backgroundgradient(@deg: 0deg; @start-color: green; @between-
 color:yellow; @end-color: red; @between:50%){
 @old-angel: @deg – 90deg;
 -ms-background-image: linear-gradient(@old-angel , @start-color,
 @between-color @between, @end-color);
 background-image: linear-gradient(@deg, @start-color, @between-
 color @between, @end-color);
}

The -ms background-image property is used by IE10, as an older version of IE is
unable to support a background image. Alternatively, you can add a filter to support
a two-color gradient. There is no support for using this filter in combination with a
fallback image, so you will have to choose webkit-based browsers, such as Chrome
and Safari, that use -webkit-linear-gradient; however, if you have to support
older versions of these browsers, you will have to use -webkit-gradient. Note that
-webkit-gradient has an unusual syntax. For example, your final mixin could look
like the following code:

.backgroundgradient(@degrees: 0deg; @start-color: green; @between-
 color:yellow; @end-color: red; @between:50%){
 background-image: -moz-linear-gradient(@degrees, @start-color
 0%, @between-color @between, @end-color 100%);
 background: -webkit-gradient(linear, left top, left bottom,
 color-stop(0%, @start-color), color-stop(@between,@between-
 color), color-stop(100%,@end-color));

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[58]

 background-image : -webkit-linear-gradient(@degrees, @start-
 color 0%, @between-color @between, @end-color 100%);
 background-image: -o-linear-gradient(@degrees, @start-color 0%,
 @between-color @between, @end-color 100%);
 background-image: -ms-linear-gradient(@degrees, @start-color 0%,
 @between-color @between, @end-color 100%);
 background-image: linear-gradient((@degrees - 90deg), @start-
 color 0%, @between-color @between, @end-color 100%);
 filter: progid:DXImageTransform.Microsoft.gradient(
 startColorstr='@startcolor',
 endColorstr='@endcolor',GradientType=0);
}

The preceding code shows that even when using Less, our code can still be complex.
Unless this complexity can support different browsers, you can see the advantage of
using Less, which allows you to handle this code only once and in a single place.

The code in the preceding example can be found in directivebackgrounds.html
and less/directivebackgrounds.less. If you wonder why you should use
a CSS background gradient at all after all of this, then please take a look at
http://lea.verou.me/css3patterns/ and see what is possible.

Special variables – @arguments and @rest
Less defines two special variables. The @arguments variable is the first one and
contains a list of all the arguments that are passed. The @arguments variable
exists inside mixins. In Less, lists are defined separately with spaces, so you can
use @arguments for properties that can be set by a list of values. Properties such
as margin and padding accept lists in their shorthand notation, as shown in the
following code:

.setmargin(@top:10px; @right:10px; @bottom: 10px; @left 10px;){
 margin: @arguments;
}
p{
.setmargin();
}

This code can be compiled into the following code:

p {
 margin: 10px 10px 10px 10px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

The second special variable is @rest. @rest..., which binds all odd arguments after
the preceding arguments from the caller to a list. By doing this, @rest... gives the
opportunity to call a mixin with an endless argument list. Please note that the three
ending dots are part of the syntax. The following code shows how @rest... binds
all the odd parameters after the @a variable to the property2 property:

.mixin(@a,@rest...) {
 property1: @a;
 property 2: @rest;
}
element {
 .mixin(1;2;3;4);
}

This code will get compiled into the following code:

element {

 property1: 1;

 property2: 2 3 4;

}

You should also consider using @rest... as a csv list. To do this, you can rewrite the
.backgroundgradient mixin from less/mixinswithdirectivebackgrounds.less
to the following code:

.backgroundgradient(@deg: 0; @colors...) {
 background-repeat: repeat-x;
 background-image: -webkit-linear-gradient(@deg, @colors);
 background-image: -moz-linear-gradient(@deg, @colors);
 background-image: linear-gradient(@deg, @colors);
}

Now, the mixin will accept an endless list of colors, and you can use it with the
following code:

div#content { .backgroundgradient(0;blue,white,black,pink,purpl
e,yellow,green,or
 ange);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[60]

The following figure shows the result of the code using this background mixin:

Return values
If you are used to functional programming or even know a mathematical function,
you expect mixins to have a return value. This simply means putting x into it and
getting y back. Mixins don't have a return value, but you can mimic this behavior
using their scope. A variable defined in a mixin will be copied to the scope of
the caller, unless the variable has been defined already in the caller's scope. The
following example will make this clear:

.returnmixin(){
 @par1: 5;
 @par2: 10;
}
.mixin(){
 @par2: 5; // protected for overwriting
 property1: @par1; // copied from returnmixin's scope
 property2: @par2;
 .returnmixin();
}

element{
.mixin();
}

This code will get compiled into the following code:

element {
 property1: 5;
 property2: 5;
}

If you look at the preceding example, you can compare property2: @par2; with a
function such as property2 = returnmixin();.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

Using the scope to mimic a return value can also be applied on
mixins. A mixin defined in another mixin can be used in the
scope of the caller. However, these are not protected by the scope
like variables are! This process is called unlocking. For now,
unlocking is outside the scope of this book.

Changing the behavior of a mixin
To make mixins more flexible, it will be useful to influence their output based on
their input parameters. Less offers different mechanisms in order to do this.

Switches
Imagine that you have a mixin, color(); which should set the color property
to white or black depending on the context. Set the context with a @context:
light; declaration and declare two mixins with the same name, as shown in
the following code:

.color(light)
{
 color: white;
}
.color(dark)
{
 color: black;
}

Now you can use the .color(@context); mixin in your code which sets the color
property of your class to white or black, depending on the value declared to @context.
This may not seem useful now, but it will be useful within your growing project. Take
a look at the Bootflat project at http://www.flathemes.com/. This project provides
color variants of Twitter's Bootstrap. Twitter's Bootstrap is a CSS framework based
on Less. Bootflat defines two styles, where one style is based on the improved style
of Bootstrap 3.0 and the other style is a Square UI style with the rounded corner
removed. This project uses one switch to compile two different styles.

Argument matching
Less allows different mixins with the same name. If there are such mixins, every mixin
which matches the caller's parameter list is used. Refer to the following color mixins:

.color(@color)
{
 color: @color;

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[62]

}
.color(@color1,@color2)
{
 color: gray;
}

With the color mixins defined in the preceding code, .color(white) compiles into
color: white; and .color(white,black) will give you color: gray;. Note
that the .color(white); call doesn't match the .color(@color1,@color2) mixin,
which needs two arguments, and so the compiler did not use it.

Guarded mixins
Mixins of the same name with the same number of arguments are also possible in
Less. All the matches are used in this case, as shown in the following example:

.color(@color){
 color: @color;
 display: block;
}

.color(@color) {
 color: blue;
}
.class{
 .color(white)
}

This code will be compiled into the following code:

.class{
 color: #ffffff;
 display: block;
 color: blue;
}

Please also note that Less converts the named color
white to #ffffff; here.

Two declarations of color don't make sense in this case. Less doesn't filter out double
declarations unless they are used in the exact same way.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

Guards can be used to prevent trouble with double-defined mixins. A guard is
defined with a keyword when it is followed by a condition. When the condition
is true, a mixin is used. The following example makes things clear:

mixin(@a) when (@<1){
 color: white;
}
mixin(@a) when (@>=1){
 color: black;
}
.class {
 mixin(0);
}
.class2 {
 mixin(1);
}

This code will be compiled to the following code:

.class {
 color: white;
}
.class2 {
 color: black;
}

Guards can be used as an if statement in programming. The comparison operators
such as >, >=, =, =<, and < can be used. One or more conditions can be combined in
the same way when separated with commas, which evaluates as true if one of them
is true.

The keyword and can be used to evaluate as true only when both conditions are true,
for instance, when @a>1 and @<5. And finally, a condition can be negated with the
keyword not, for instance, when (not a = red).

If you have used CSS media queries earlier, then you must realize
that guards act in the very same way that a media query does in CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[64]

Finally, guard conditions can also contain built-in functions. These functions will be
discussed in the next chapter and act on all defined variables when they are not part
of the argument list. The built-in functions of the guard conditions can be seen in the
following code:

@style: light;
.mixin(@color) when is_color(@color) and (@style = light) {
 color: pink;
}
.class() {
 mixin(red);
}

This code can be compiled into the following code:

.class {
 color: pink;
}

In the case of @style: dark; or mixin(1);, there was no match.

Using guards and argument matching to construct
loops
When Less doesn't find a matching mixin, it goes to the next evaluation and doesn't
break. This can be used in combination with guards and argument matching to
construct loops. To show this, imagine 10 classes, each containing a numbered
background image. The .class1 class has the background-image property value set
to background-1.png, the .class2 class has set the value of the background-image
property to background-2.png, and so on, as seen in the following code:

.setbackground(@number) when (@number>0){
 .setbackground(@number - 1);
 .class@{number} { background-image: ~"url(backgroundimage-
 @{number}.png)"; }
}
.setbackground(10);

This code can be compiled into the following code:

.class1 {
 background-image: url(backgroundimage-1.png);
}
.class2 {
 background-image: url(backgroundimage-2.png);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[65]

...

.class10 {
 background-image: url(backgroundimage-10.png);
}

The last mixin perhaps looks complex when you see it first, but if you try to
evaluate the mixin yourself, you will see that it actually contains a lot of stuff
you have learned before.

In the preceding code, the setbackground mixin calls itself. Programmers will call
this a recursion. What happens here?

The .setbackground(10); call matches the .setbackground(@number)
mixin when @number>0, so please make use of this. The first evaluation of
.setbackground(@number - 1); also matches the mixin. This means that the
compiler runs the mixin again. This will repeat until @number -1 is 0; no matches
can be found anymore. Now the compiler will read ahead of where it stopped in
order to use the mixin.

The last stop was at @number = 1, so it evaluates the .class@{number} {
background-image: ~"url(backgroundimage-@{number}.png)"; } declaration
for the @numer = 1 condition. When it stopped before, it was at @number = 2. So, it
evaluates the .class@{number} { background-image: ~"url(backgroundimage-@
{number}.png)"; } declaration for the @numer = 2 condition, and so on. When we
are back at @numer = 10, all the code has been compiled. So, the compiler stops.

Besides guards and argument matching, the preceding example also
contains an interpolated property in the .class@{number} class declaration,
as well as an example string interpolation with escaping when declaring the
~"url(backgroundimage-@{number}.png)"; code. Mixins also show the need
to use an additional space when performing calculations. So, @number - 1 won't
be evaluated as one @number-1 variable.

The !important keyword
The chapter ends with a note on the !important keyword in Less. Using !important
in a declaration gives the declaration the highest precedence when two or more
selectors match the same element. The !important keyword overrules inline styles,
as shown in the following code:

<style>
p{color:green !important;}
</style>
<p style="color:red;">green</p>

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

[66]

The preceding code will show the text in green. As the example shows you, you can
use !important to change the styles, which you cannot edit, of the source with inline
CSS. It can also be used to make sure a style is always applied. Nevertheless, please
use !important with care, as the only way to overrule !important is to use another
!important. Any incorrect or unnecessary use of !important in Less will make your
code messy and difficult to maintain.

In Less, you can not only use !important for properties, but you can also use it with
mixins. When !important is set for a certain mixin, all the properties of this mixin will
be declared with the !important keyword. This can be seen in the following code:

.mixin(){property1: 1;property2: 2;
}
.class{
.mixin() !important;
}

This code will be compiled into the following code:

.class{
 property1: 1 !important;
 property2: 2 !important;
}

Summary
In this chapter, you learned about variables and mixins. You have seen how
defining variables and mixins at a single place will reduce your code and make
it easy to maintain.

In the next chapter, you will learn more about mixins and how to nest and extend
them. You will also read about the built-in functions of Less. Built-in functions can
be used to manipulate values in mixins and other parts of your code.

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations,
and Built-in Functions

In this chapter, you will learn how Less helps you organize your CSS selectors more
intuitively, makes inheritance clear, and makes your style sheets shorter. You will
also learn about operations and built-in functions. Operations let you add, subtract,
divide, and multiply property values and colors. They also give you the power to
create complex relationships between properties. You will also learn how to set
variables or guards using the built-in functions in your Less code.

This chapter will cover the following topics:

• Nesting CSS rules
• Using operations
• Using built-in functions in you code
• Using built-in functions in your mixins

The navigation structure
With the examples in this chapter, you will extend the layout from Chapter 2,
Using Variables and Mixins step by step with a navigation structure. You will
build this navigation structure by styling an HTML list with Less. This navigation
structure forms a menu in the sidebar of the layout.

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations, and Built-in Functions

[68]

The final result will look like the following screenshot:

The final navigation menu built using Less

Nested rules
You will use the layout example from Chapter 2, Using Variables and Mixins, to study
nesting of rules in more detail.

To do this, you must first open http://localhost/index.html in your browser
and then open less/sidebar.less in your text editor.

Anchors are added to the menu items. This means that the HTML code of the side
menu now looks like the following code:

<aside id="sidemenu">
 <h2>Side menu</h2>

 item 1
 item 1

</aside>

You need a selector for each rule to style the different elements in CSS as can be seen
in the following code:

#sidebar h2{
 color: black;
 font-size: 16px;
}
#sidebar ul li a{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

 text-decoration: none;
 color: green;
}

As you can see, both the ul (including the li element and the a anchor) element and
the h2 element are the children of the aside element with the #sidemenu ID. CSS
doesn't reflect this relationship because it is currently in the format as shown in the
preceding code. Less will help you to reflect this relationship in your code. In Less,
you can write the following code:

#sidebar{
 h2{
 color: black;
 font-size: 16px;
 }
 ul{
 li{
 a{
 text-decoration: none;
 color: green;
 }
 }
 }
}

The preceding code will compile straight into the following CSS syntax:

#sidebar h2 {
 color: black;
 font-size: 16px;
}
#sidebar ul li a {
 text-decoration: none;
 color: green;
}

The resulting CSS of your compiled Less code is exactly the same as your original
CSS code. In Less, you refer to the #sidemenu ID only once, and due to the nesting
of h2 and ul inside #sidemenu, your code structure is intuitive and reflecting the
DOM structure of your HTML code.

To keep your code clean, a new less/sidebar.less file has been created.
It contains the preceding Less code. Of course, this file should also be imported
into less/styles.less using the following line of code:

@import "sidebar.less";

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations, and Built-in Functions

[70]

Please also note that the sidebar is wrapped in a semantic HTML5 aside element
instead of a div element. Although this is more semantic, you will find that your
sidebar has floated to the left after you made these changes. To fix this, open less/
content.less in your text editor. By studying the nesting of the CSS selectors in the
Less code, you will find aside float:right; nested in the .wrapper container. If
you move this aside rule inside the #content container, the syntax should look like
the following code:

#content {
 //two third of @basic-width
 width:(@basic-width * 2 / 3);
 float:left;
 min-height:200px;
 aside {
 float:right;
 }
}

In the less/content.less file, you will also find the line h2 { color: @content-
dark-color; }, which is in contrast to what you will see in the aside element. The
h2 rule will still be overwritten by #sidebar h2{ color: black; }. The final rule
contains a #sidebar selector and so it has a higher CSS specificity, as explained in
the first chapter.

Inspect the Less files, such as less/header.less, again and keep these brand new
insights about nesting of CSS selectors in mind. You will see that nesting is already
used frequently. For example, in less/header.less, the properties of the h1
element are set by nesting.

A proper inspection of these files will also show you how mixins can be nested in
classes and other mixins.

Mixins and classes
The name of a mixin should always end with parentheses; otherwise, it is a normal
class. Both mixins and classes can be nested in Less. Consider the difference in the
following example Less code:

.class-1{
 property-1: a;
}
.class-2{
 .class-1;
 property-2: b;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

This code gets compiled into the following code:

.class-1 {
 property-1: a;
}
.class-2 {
 property-1: a;
 property-2: b;
}

You can see how the properties of .class-1 are copied into .class-2 in the
compiled CSS. When you add parentheses after .class-1 in Less and make
it a mixin, you should now consider the following code:

.mixin(){
 property-1: a;
}
.class-2{
 .mixin;
 property-2: b;
}

This code will get compiled into the following CSS code:

.class-2 {
 property-1: a;
 property-2: b;
}

Let's go back to the example of the side navigation menu. When your menu is ready,
you will find that the "navigating" text inside the h2 heading element makes no sense.
Unless you are visually impaired and use a screen reader, you can easily see the side
menu is intended as navigation for the website. So, you can hide this heading but
should keep it visible for screen readers. Setting display:none will hide the element
from screen readers, while visibility:hidden will also hide the element but still
takes space and so can mess up our design. Setting the clip property will help in this
situation. You can find more details by visiting http://a11yproject.com/posts/
how-to-hide-content/.

Based on the rule of precedence, you can write the following class using Less:

.screenreaders-only {
 clip: rect(1px, 1px, 1px, 1px);
 position: absolute;
 border:0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations, and Built-in Functions

[72]

Add the preceding class to less/boxsizing.less and rename this file as
less/basics.less. Also, please don't forget to rename the import statement
in less/styles.less. Now you can use the following Less code to hide the
h2 heading element in the sidebar menu:

#sidebar{
 h2{
 color: black;
 font-size: 16px;
 .screenreaders-only;
 }
}

After performing these steps and compiling the Less code into the CSS code, the
sidebar navigation will now look like the following screenshot:

A styled navigation menu with hidden heading text

As .screenreaders-only is a class and not a mixin, and classes are compiled
to your final CSS, not only can you use the .screenreaders-only class to add
its properties to other classes in Less, but you can also use the class in your HTML
directly, as shown in the following line of code:

<div class="screenreaders-only">Only readable for screen
 readers</div>

When working with Less, you will often have to choose between specific compiled
Less classes based on your project's HTML structure and a more generic solution that
will be applied with a class inside your HTML code. Unfortunately, in these cases,
there is no single solution. In general, DOM-specific code will generate more CSS code
but will also keep your HTML clean and give you the opportunity to generate more
semantic HTML code. Reusing your Less code won't always be simple for this option.

Compiling your Less syntax as classes and using them in your HTML will make
your code more reusable. On the other hand, it will mess up your HTML due to
these classes. Also, the relationship between the CSS effects and HTML structure
becomes less strict. This makes it more difficult to maintain or change.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

Variables
In less/variables.less, you should define a section for your sidebar, as shown in
the following code:

/* side bar */
@header-color: black;
@header-font-size: 16px;
/* menu */
@menu-background-color: white;
@menu-font-color: green;
@menu-hover-background-color: darkgreen;
@menu-hover-font-color: white;
@menu-active-background-color: lightgreen;
@menu-active-font-color: white;

With the preceding variables, the Less code in less/sidebar.less will now look
like the following code:

#sidebar{
 h2{
 color: @header-color;
 font-size: @header-font-size;
 .screenreaders-only;
 }
 ul{
 li{
 a{
 text-decoration: none;
 color: @menu-font-color;
 background-color: @menu-background-color;
 }
 }
 }
}

Classes and namespaces
Before finishing the menu, the Less code used to style the menu will be changed to a
class first. The points to consider here have already been discussed. A navigation is
a general structure that can be used in many projects. In the class structure, it can be
used to style any HTML list.

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations, and Built-in Functions

[74]

Please create a new file for less/nav.less and write the following code into it:

.nav{
 li{
 a{
 text-decoration: none;
 color: @menu-font-color;
 background-color: @menu-background-color;
 }
 }
}

Now you can turn every HTML list (ul or ol) in our HTML document into a
navigation structure just by adding the .nav class to it. This can be done using
the following line of code:

<ul class="nav">

Please notice that with this Less code, lists can't be nested, and the items on the list
should contain anchors (links). These requirements make it seem clear that this
code can easily be (re)used in your other projects. Less also offers the possibility
of defining namespaces. Namespaces can make your code more portable and are
defined in the same way as CSS ID selectors. Namespaces start with a #, as shown in
the following code:

#lessnamespace {
 .nav {
 //code from less/nav.less here
 }
}

The #lessnamespace namespace can now be used as an example, as shown in the
following code:

#sidebar {
 ul{
 #lessnamespace > .nav;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

In fact, a namespace doesn't differ from an ID selector. The #lessnamespace
namespace can also be used directly in your HTML code, although this is not
useful in most cases, as shown in the following code:

<div id="lessnamespace">
 <ul class="nav">
 ...

</div>

HTML requires every ID to be defined only once, so you can't use the preceding
HTML code more than once in your HTML document unless you append the ID
to the body. Nevertheless, the preceding code shows that even specifically written
Less code for a custom HTML DOM structure can be reused in other projects.

In the #lessnamespace namespace, as defined earlier, .nav is a class that makes
direct usage possible. When .nav is changed to a mixin, it can only be reused in Less,
as shown in the following code:

#namespace {
 .nav(){
 li{
 width:100%;
 }
 }
}
#sidebar {
 ul{
 #namespace > .nav;
 }
}

This code will get compiled straight into the following code:

#sidebar ul li {
 width: 100%;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations, and Built-in Functions

[76]

Operating on numbers, colors, and
variables
Less has support for the basic arithmetic operations: addition (+), subtraction (-),
multiplication (*), and division (/). In the strict-math mode, operations should be
placed between parentheses. You can apply an operation on variables, values, and
numbers. These will help you make relationships between variables.

Open less/footer.less to immediately see the operation that you used, as in the
following code, and its benefits:

footer {
 div {
 float: left;
 width: ((@basic-width / 3) - @footer-gutter);
 }
}

In the preceding code, the / sign (division) has been used to give the footer columns
one-third of the available width (as set by @basic-width). Using operations in your
code feels so natural that you may not have even realized you have been using them
until now. Less uses normal order precedence, where you can add extra parentheses
to explicitly set precedence and avoid confusion. For instance, in Less, 3 + 3 * 3 gives
12. So, (3 + 3) * 3 equals 18, as shown in the following code:

.mixin(){
 property1: (3 + 3 * 3);
 property2: ((3 + 3) * 3);
}
.class {
.mixin;
}

This code will get compiled into the following code:

.class {
 property1: 12;
 property2: 18;
}

Less operations can also be used for color manipulation and operations can be
applied on values and colors with different units, as shown in the following code:

@color: yellow;
.mixin(){
 property1: (100px * 4);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

 property2: (6% * 1px);
 property3: (#ffffff - #111111);
 property4: (@color / 10%)
}
.class {
.mixin;
}

This code will get compiled into the following code:

.class {
 property1: 400px;
 property2: 6%;
 property3: #eeeeee;
 property4: #1a1a00;
}

The & symbol
The & symbol plays a special and important role in Less. It refers to the parent of the
current selector and you can use it to reverse the order of nesting and to extend or
merge classes. You will see that the following example will tell you more than what
can be expressed in a thousand words:

.class1
{
 .class2{
 property: 5;
 }
}

.class1
{
 .class2 & {
 property: 5;
 }
}

This code will compile into the following code:

.class1 .class2 {
 property: 5;
}
.class2 .class1 {
 property: 5;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations, and Built-in Functions

[78]

You can see that .class2 becomes the parent of .class1 when you use the &
symbol after it. The & symbol can also be used in order to reference nesting that
is outside the mixin.

The & symbol can also be used to nest and append pseudo classes to a class. Later
on, you will see that you can use it to append classes too. A simple example of this
will be adding a :hover pseudo class triggered by a mouse hover to a link, as shown
in the following code:

.hyperlink{
 color: blue;
 &:hover {
 color: red;
 }
}

This code can be compiled into the following code:

.hyperlink {
 color: blue;
}
.hyperlink:hover {
 color: red;
}

Now, open less/mixins.less in your text editor and find the clearfix mixin. The
clearfix mixin uses the & symbol to append the :hover, :after, and :before pseudo
classes to your elements, as shown in the following code:

.clearfix() {
 &:before,
 &:after {
 content: " "; /* 1 */
 display: table; /* 2 */
 }
 &:after {
 clear: both;
 }
}

With this new knowledge about the & symbol, it will now be easy for you to
understand how to extend your example navigation menu with the :hover and
:active (.active) states, and the following code shows you how your extended
code will look:

.nav {
 li {
 a {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

 text-decoration: none;
 color: @menu-font-color;
 &:hover {
 color:@menu-hover-font-color;
 background-color:@menu-hover-background-color;
 }

 width:100%;
 display: block;
 padding: 10px 0 10px 10px;
 border: 1px solid @menu-border-color;
 margin-top: -1px;// prevent double border
 }
 &.active {
 a {
 color:@menu-active-font-color;
 background-color:@menu-active-background-color;
 }
 }
 &:first-child a {
 border-radius: 15px 15px 0 0;
 }
 &:last-child a{
 border-radius: 0 0 15px 15px;
 }

 }

 list-style: none outside none;
 padding:0;
}

Open http://localhost/indexnav.html in your browser to inspect the results of
the preceding syntax.

The extend pseudo-class is a Less pseudo-class and uses the same syntax as a CSS
pseudo-class. The extend pseudo-class adds the selector to the extended selector
list. Adding the selector to the selector list of a different class gives the selector the
same properties as the extended class. Remember the .hyperlink class in a previous
example? If you extend this class, then both classes will have the same properties:

.hyperlink{
 color: blue;
 &:hover {
 color: red;
 }
}
 .other-hyperlink:extend(.hyperlink){};

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations, and Built-in Functions

[80]

This code will get compiled into the following code:

.hyperlink,

.other-hyperlink {
 color: blue;
}
.hyperlink:hover {
 color: red;
}

Notice that the nested :hover pseudo class is not covered in .other-hyperlink. To
extend a class including the nested elements of the extended style, you will have to
add the all keyword, as shown in the following code:

.other-hyperlink:extend(.hyperlink all){};

This code now gets compiled into the following code:

.hyperlink,

.other-hyperlink {

 color: blue;

}

.hyperlink:hover,

.other-hyperlink:hover {

 color: red;

}

In cases where you nest the :extend statement, you have to use the & symbol as a
reference, as shown in the following code:

.other-hyperlink{
 &:extend(.hyperlink);
};

In spite of the fact that the extend syntax mimics the syntax of the pseudo class,
both of them can be combined as long as :extend is added at the end of the selector,
as shown in the following code:

.other-hyperlink:hover:extend(.hyperlink){};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

Property merging
Property merging is useful if properties accept a Comma Separated Value (CSV).
You will find this type of property mostly in CSS3, where borders, backgrounds,
and transitions accept a CSV list. However, you will also find that the old-school
font-family parameter accepts a list of font names that are separated by commas.
Properties are merged by adding a plus sign (+) after their names, as shown in the
following code:

.alternative-font()
{
 font-family+: Georgia,Serif;
}
.font()
{
 font-family+: Arial;
 .alternative-font;
}
body {
.font;
}

This code will get compiled into the following code:

body {
 font-family: Arial, Georgia,Serif;
}

Built-in functions
Less supports many handy built-in functions. A built-in function can be used to
manipulate Less values inside mixins and set the variables' values. Last but not
least, they can also be used in guard expressions. You will find the complete list
of functions by visiting http://lesscss.org/functions/.

In this chapter, you won't find them all, but you will learn how to use functions
from all different groups. Functions can be grouped based on their input and output
types, where these types are mathematical functions, color functions, list functions,
string functions, and type functions. There is also a small number of functions that
can't be grouped using the preceding classification.

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations, and Built-in Functions

[82]

JavaScript
Less functions map native JavaScript functions and code in the first place because
of the fact that Less has been written in JavaScript. Currently, JavaScript expressions
can still be evaluated as values inside Less code, but this ability may be removed in
future versions. JavaScript code should be wrapped between back quotes when used
in your Less code, as shown in the following code:

@max: ~"`Math.max(10,100)+'px'`";
p {
 width: @max;
}

This Less code, which includes JavaScript code, will compile into the following
CSS code:

p {

 width: 100px;

}

Even though it is possible, try to avoid using JavaScript in your code. Less compilers
written in other languages can't evaluate this code, so your code is not portable and
is more difficult to maintain.

If there is no built-in Less function available for your purpose, try to write the
equivalent of what you need in Less code. Since Version 1.6, there is a max()
function, and previously, you could use the following code:

.max(@a,@b) when (@a>=@b){@max:@a;}

.max(@a,@b) when (@b>@a){@max:@b;}

In particular, watch out when using the JavaScript environment in your Less code.
Also, values such as document.body.height make no sense in your compiled and
stateless CSS.

List functions
Extract() and length() are functions to get the values and the length of a CSV list.
Together, these functions can be used to iterate as arrays over a CSV list.

Remember the loop used to set background images in Chapter 2, Using Variables and
Mixins? Here, you will use the same technique to add icons before the links in
the sidebar navigation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

This example uses icons from Font Awesome. Font Awesome is an iconic font that
uses scalable vector icons which can be manipulated by CSS. Icons can be scaled or
colored easily with CSS; also, loading the font requires only one HTTP request for all
icons. Please refer to http://fontawesome.io/ for more information.

To use Font Awesome, reference its source first by adding the following line of code
to the head section of your HTML document:

<link href="//netdna.bootstrapcdn.com/font-awesome/4.0.3/css/font-
 awesome.css" rel="stylesheet">

Font Awesome and other iconic fonts can also be integrated and
compiled into your project using Less. You will learn how to do
this in Chapter 4, Avoid Reinventing the Wheel.

In your HTML, you can now use the following line of code:

<i class="fa fa-camera-retro"></i> fa-camera-retro

Icons are added with the CSS :before pseudo class, so the preceding HTML code
can also be styled without a class by using the following Less code:

i:before {
 font-family:'FontAwesome';
 content:"\f083";
}

A list of Font Awesome icons and their CSS content values
can be found by visiting http://astronautweb.co/
snippet/font-awesome/.

With this information about iconic fonts, you can construct a loop that adds icons to
the list items of your navigation, as shown in the following code:

@icons: "\f007","\f004","\f108","\f112","\f072","\f17c";
.add-icons-to-list(@i) when (@i > 0) {
 .add-icons-to-list((@i - 1));
 @icon_: e(extract(@icons, @i));
 li:nth-child(@{i}):before {
 font-family:'FontAwesome';
 content: "@{icon_}\00a0";
 }
}
.add-icons-to-list(length(@icons));

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations, and Built-in Functions

[84]

In the @icon_: e(extract(@icons, @i)); line, e() is a string function, and
this function is the equivalent of escaping using ~"". Please also note that in the
content: "@{icon_}\00a0"; statement, \00a0 only adds an extra space that
separates the icon from the link.

The icons in the @icons CSV list are randomly chosen. The recursive calling of
the add-icons-to-list() mixin starts with the .add-icons-to-list(length(@
icons)); call, where length(@icons) returns the number of items in @icons.

The Less code of the loop which adds icons to the list items should be added into less/
navicons.less. After adding the code, open http://localhost/indexnavicons.
html to see the results, which should look like the following screenshot:

Iconized hyperlinks built with Less and Font Awesome

The icon list in the preceding screenshot serves only for demonstration purposes,
where, in fact, the icons are not even related to the hyperlinks. The absence of this
relationship makes it difficult to find a use case at all. However, with your creative
minds, I bet you can find one. Remember that CSS is used only for presentation and
cannot modify HTML, so you can't set the links themselves using Less. However,
creating a relationship between the hyperlinks and icons that already exist is
possible, as shown in the following code:

#content a[href*="linux"]:before {
 font-family:'FontAwesome';
 content: "\f17c\00a0";
}

Here, a[href*="linux"] is a selector for all anchors with the word linux in their
href attribute. After adding the preceding code to less/styles.less, you can view
the results at http://localhost/index.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

Using color functions
Less color functions can be split into functions for color definition, blending,
operations, and channel manipulation.

Colors are defined in color channels. An RGB color has three channels: red, green,
and blue. CSS2 used this RGB definition to declare colors, and CSS3 adds new
definitions for color declaration. These new definitions, such as HSL and HSV, are
nothing more than transformations of RGB values. The CSS3 color setting methods
should be more intuitive and user friendly. For instance, HSL defines colors in three
channels, which are hue, saturation, and lightness in this case. Less has built-in
functions for channel manipulation of different types of color definitions. Less also
supports different types of color definitions. Since CSS3, you can declare color values
as hexadecimal colors, RGB colors, RGBA colors (RGB colors with an additional
alpha channel that sets the opacity), HSL colors, and HSLA colors (HSL colors with
an additional alpha channel that also sets the opacity). Of course, you are allowed to
use the predefined cross-browser color names.

The compiled color values of Less's color definitions are not always defined as a
hexadecimal color in CSS code; if possible, the output of a color definition matches
the CSS values, as shown in the following code:

.selector {

 color1: rgb(32,143,60);

 color2: rgba(32,143,60,50%);

 color3: hsl(90, 100%, 50%);

}

The preceding Less code becomes the following CSS code after compilation:

.selector {

 color1: #208f3c;

 color2: rgba(32, 143, 60, 0.5);

 color3: #80ff00;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations, and Built-in Functions

[86]

Colors are a basic part of the design and styling of your website. Color functions can
help you design your color palettes and make them dynamic. They will be used, for
instance, to give elements a border color that is darker than the background color or
to give elements contrasting colors that are based on a single input color.

The darken() and lighten() functions
The darken() and lighten() functions are two color functions that can be used
to obtain a darker or lighter variant of the input color. You have seen how these
functions have been used in the example layout from Chapter 2, Using Variables and
Mixins. Now you can apply these functions on the website navigation menu you
have built previously.

Please open less/variablesnav.less in your text editor and define your menu
variables that are dependent on the main @menucolor parameter as follows:

@menucolor: green;
@menu-background-color: white;
@menu-font-color: @menucolor;
@menu-border-color: darken(@menucolor,10%);
@menu-hover-background-color: darken(@menucolor,10%);
@menu-hover-font-color: white;
@menu-active-background-color: lighten(@menucolor,10%);
@menu-active-font-color: white;

After doing this, check your changes by opening http://localhost/indexnav.
html in your browser. Now you can modify the look of your navigation by only
changing the color defined by the @menucolor variable. You will also find that
setting @menucolor to a light color, such as pink or yellow, makes your fonts
unreadable due to the contrast between the background color and the font color not
being high enough. High contrast plays an important role in web design. Designs
with high contrast help you meet accessibility standards. High contrast not only
helps visibly disabled or color blind people, it also influences those with normal
vision, as humans are naturally in favor of high contrast color designs. This favor
plays a role in the first impression of your website.

Calculating the right amount of contrast is not always easy. Also, in this case, you
don't want to have to change all your font colors after changing the basic color. The
contrast() function of Less will help you to choose a color that can easily be seen
against a colored background. In accordance with WCAG 2.0 (http://www.w3.org/
TR/2008/REC-WCAG20-20081211/#relativeluminancedef), this function compares
the luma value and not the lightness of the colors. The luma() function itself is also a
built-in color function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[87]

The contrast() function accepts four parameters. The first parameter defines the
color to be compared against; this is the background color in this particular case. The
second and third parameters define the dark and light color, which are black and
white by default. The fourth and last parameter sets a threshold. This threshold has
been set to 43 percent by default and defines the luma (perceptual brightness). Colors
above the threshold are considered as light, and contrast() returns the dark color
that is already defined in the second parameter for these light colors.

Now, reopen less/variablesnav.less and change the navigating font colors
according to the following code:

@menucolor: green;
@menu-background-color: white;
@menu-font-color: contrast(@menucolor);
@menu-border-color: darken(@menucolor,10%);
@menu-hover-background-color: darken(@menucolor,10%);
@menu-hover-font-color: contrast(@menu-hover-background-color);
@menu-active-background-color: lighten(@menucolor,10%);
@menu-active-font-color: contrast(@menu-active-background-color);

To see more effects, change the @menucolor variable to different colors such as yellow,
pink, darkgreen, or black and observe the change by opening http://localhost/
indexnav.html. Keep in mind that the lightest color is white and the darkest is black,
so darken(black,10%); or lighten(white,10%); won't have any effect.

Color manipulation
As mentioned earlier, Less provides you with many functions to manipulate colors.
This book is not about color theory, so it handles only some examples of color
manipulation. You can find more information about color theory by visiting
http://www.packtpub.com/article/introduction-color-theory-lighting-
basics-blender.

Color operations
With the darken(), lighten(), and contrast() functions, you have become
acquainted with some of the color operations. Other operations include saturate(),
desaturate(), fadein(), fadeout(), fade(), spin(), mix(), and grayscale().

The functions mentioned earlier accept one or more color values, with the percentage
as an input parameter, and return a color. Please note that the color ranges from
white to black and does not wrap around. So, you can't, as mentioned earlier, darken
the color black so that it becomes white.

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations, and Built-in Functions

[88]

If color definitions contain percentages, then the operations change them with the
absolute percentage of the input parameter. So, darken(hsl(90, 80%, 50%), 20%)
becomes #4d8a0f; which equals hsl(90, 80%,30%) and not hsl(90, 80%,10%). Of
course, you will see the same effect as you manipulate the second channel, which
defines saturation. For instance, desaturate(hsl(45, 65%, 40%), 50%) compiles
into #756e57;, which equals hsl(45, 15%, 40%).

The mix() function is the last example of color operations. The other functions are
left for you as exercises.

@color: mix(blue, yellow, 50%);
.class {
color: @color;
}

This will again become the following:

.class {
 color: #808080;
}

This mixture will also be shown in the following image :

How a mixture of blue and yellow is presented using mix(blue, yellow, 50%)

Color blending with Less
The color blending functions calculate a new color based on two input colors, where
functions apply basic operations such as subtraction on the color channels of the
input colors. Available functions, also called blend modes, include multiply(),
screen(), overlay(), softlight(), hardlight(), difference(), exclusion(),
average(), and negation(). Users of layered image editors such as Photoshop or
GIMP will recognize these functions.

The difference() function subtracts the second color from the first color on a
channel-by-channel basis, as shown in the following code:

@color: difference(orange, red, 50%);
.class {
color: @color;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[89]

The preceding code will become the following code:

.class {
 color: #00a500;
}

The following figure shows how a mixture of orange and red would appear:

How a mixture of orange and red will appear using difference(orange, red, 50%)

Type functions
Type functions evaluate the type of the input value and return as true if the type
matches the function. The functions that are available are isnumber(), isstring(),
iscolor(), iskeyword(), isurl(), ispixel(), isem(), ispercentage(), and
isunit(). Some example functions are shown in the following code:

isnumber("string"); // false
isnumber(1234); // true
isnumber(56px); // true
iscolor(#ff0); // true
iscolor(blue); // true
iscolor("string"); // false
ispixel(1234); // false
ispixel(56px); // true

Type functions are useful in defining guards. Please consider the following syntax:

.mixin() when isprecentage(@value) {
 width: 25%;
}
.mixin() when ispixel(@value) {
 width: (@value / 4);
}

The default() function is another built-in function that is not grouped in a
function class. The default() function can be used inside a guard and returns
as true when none of the other mixins match the caller. You can add a default
mixin to the preceding mixins, as shown in the following code:

.mixin() when ispercentage(@value) {
 width: 25%;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Rules, Operations, and Built-in Functions

[90]

.mixin() when ispixel(@value) {
 width: (@value / 4);
}
.mixin() when (default()) {
 display: none;
}

The box-shadow mixin
With all that you have learned about Less, you now can understand, build, and
evaluate any complex Less code. To prove this, please open less/mixins.less and
take a look at the box-shadow mixin (originally published on lesscss.org), which
looks like the following code:

.box-shadow(@style, @c) when (iscolor(@c)) {
 -webkit-box-shadow: @style @c;
 -moz-box-shadow: @style @c;
 box-shadow: @style @c;
}
.box-shadow(@style, @alpha: 50%) when (isnumber(@alpha)) {
 .box-shadow(@style, rgba(0, 0, 0, @alpha));
}

To fully understand these mixins, you will have to know the basics of box-shadow in
CSS3. The box-shadow properties accept a CSV list of shadows. A shadow consists
of a list of two to four length values and a color. The first two length values describe
the vertical and horizontal offsets related to the center of the box. These values are
required but can be set to 0 to get an equal-size shadow around the box. The final
values are optional and set the blur radius and the spread radius, respectively. The
blur and spread radii are both 0 by default and give a sharp shadow, where the
spread radius equals the blur radius.

Now you should be able to evaluate the mixin. You will see that the mixins form a
guard. Both mixins accept two parameters. The first parameter is the length vector,
which is described earlier; the second is a color or a percentage. If you recall that
the isnumber(40%) call evaluates as true despite the ending percent sign. Calling
rgba(0, 0, 0, @alpha) will give shades of gray depending on the value of
@alpha. If you define the second parameter as a color, such as blue or #0000ff#,
the iscolor(@c) guard will evaluate as true, and the first mixin will be compiled
using your defined color.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[91]

Summary
In this chapter, you built a navigation menu with Less. The navigation contains,
amongst other things, hovers, contrast colors, and icons that can all be set with a
few basic settings. You have learned how to use nesting rules, mixins, and built-in
functions in Less. At the end of the chapter, you have understood and used complex
Less code. All this newly acquired knowledge will be very useful in the next chapter.
In the next chapter, you will learn how to find and build reusable Less code. This will
help you work faster and obtain better results.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel
In the preceding chapters, you learned how to use Less to compile your CSS. Less
helps you create reusable and maintainable CSS code. You have learned how to
organize your files and the previous chapter also showed you the role of namespaces
to make your code portable. Less helps you write efficient code to handle browser
incompatibility. Less doesn't solve problems with browser incompatibility on its own
but makes your solutions reusable, although the reusable mixins can still be complex
for this reason. In this chapter, you will learn that you won't have to write all this
complex code yourself. There are some libraries of prebuilt mixins out there which
can help you work faster and create more stable code.

This chapter will cover the following topics:

• Background gradients
• Preventing unused code
• Testing your code
• The iconic fonts of prebuilt mixins
• Retina.js

Revisiting background gradients
Remember the CSS3 background gradient that was discussed in Chapter 2, Using
Variables and Mixins? To show a better or the same gradient on different browsers,
you have to use vendor-specific rules. Different sets of rules make your mixins more
complex. In this case, more complex also means more difficult to maintain.

In practice, your mixins grow with outdated code or with code that is no longer
supported on the one hand, while you have to update your mixins for newer
browsers on the other. Of course, we can only hope that new browser versions
support CSS3 specifications without any further changes to the code.

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel

[94]

The Can I use... website (http://caniuse.com/) provides compatibility tables for
HTML5, CSS3, and SVG support, and also for desktop and mobile browsers. It will
show you that most of the current browsers have support for CSS gradients in their
current version. At the time of writing this book, the Android browser for mobile still
relies on the -webkit vendor rule, and Opera Mini doesn't support it at all.

If you drop the support for older browsers, your mixin can be reduced to the
following code snippet:

 .verticalgradient(@start-color: black; @end-color: white; @start-
percent: 0%; @end-percent: 100%) {
 background-image: -webkit-linear-gradient(top, @start-color @
start-percent, @end-color @end-percent);
 background-image: linear-gradient(to bottom, @start-color @start-
percent, @end-color @end-percent);
 background-repeat: repeat-x;
 }

The preceding code also drops support for IE8 and IE9. If you choose to support
these browsers too, you have to add an additional IE-specific rule. The Can I use…
website also shows you market shares of the most common browsers. In some cases,
it can also be useful to only provide functional support for older browsers and not
expect everything to look exactly the same on all browsers. For instance, a navigation
structure without advanced animations can still help the user navigate through your
site. People who use an older browser do not always expect the newest techniques.
These techniques also do not always have added value. Older browsers mostly
don't run on the newest hardware; on these browsers, support for features such as
gradients will only slow down your website instead of adding any value.

Unused code
Even when using Less for long running and growing projects, it's almost impossible
to not find some unused pieces of code in your code. Browser tools can help detect
this unused code in your final CSS.

Chrome's developer tools
Google Chrome's developer tools have an option to find unused CSS. In Google
Chrome, navigate to Tools | Developers Tools, select the Audits tab, and click
on Run.

Now use this tool to test the demo code from the preceding chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

To start, open http://localhost/index.html in your browser and run the test.
You will see the following screenshot:

Unused code shown by Chrome's developer tools

The list of unused code starts with a long list of styles defined in less/normalize.
less, as seen in Chapter 1, Improve Web Development with Less; these are the styles of
the CSS reset.

In most projects, the same base of CSS code (the same file) is used for every page. For
this reason, you cannot always guarantee that a page includes only the code that it
really uses. Some of this code won't be used on every page but will have to be used
on other or future pages. Web browsers are able to cache CSS files, for this reason
it is better to use the same CSS file to style different pages from your website. Some
pages will not use all the cached style rules which will be shown as unused code on
that page. Cached code is loaded once and used on every page. The CSS reset seems
useful for all pages, so you should not change or remove it.

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel

[96]

As you can also see, .centercontent and .screen-readeronly are unused.
Remember that classes are compiled into your CSS while mixins are not. Now,
.centercontent and .screen-readeronly are defined as classes. Having a
.screen-readeronly class seems useful, but .centercontent can be changed
to a mixin.

Firebug CSS usage add-on
For Firefox, an add-on for Firebug is available. This helps you find the unused code.
You can download this plugin at https://addons.mozilla.org/en-US/firefox/
addon/css-usage/.

Testing your code
You don't have to write all the Less code yourself as it is reusable and portable.
Mixins and snippets of Less code can be found on the Web and (re)used in your
projects. Search for Less mixin background gradients and you will get many useful
hits. Try to find code that offers support for browsers and meets your requirements.
If you have any doubts about the browser support of a mixin, consider asking
questions on Stackoverflow.com (http://www.stackoverflow.com/). Always
show your code and what you have done; don't just ask for a solution. Also, other
questions regarding Less can be asked on Stackoverflow.com.

Integration of code snippets or even complete namespaces will make the testing of
your code more important.

Understanding TDD
Test-driven development (TDD) is a proven method for software development. In
TDD, you write tests for every piece of code in your project. All tests should pass after
changing your code when adding or improving functionalities or refactoring the code.
All tests should run automatically. While automatically testing Less and CSS code,
you need to manually look at the exact appearance of the pages in different browsers
and devices, although other aspects such as correctness and performance can be
tested automatically. You can, for instance, automatically test your code with tools
such as CSS Lint (http://ccslint.net/). CSS Lint validates and tests your code,
among other things, for performance, maintainability, and accessibility. These tools
test the compiled CSS and not your Less code. The Less Lint Grunt plugin compiles
your Less files, runs the generated CSS through CSS Lint, and outputs the offending
Less line for any CSS Lint errors that are found. More information can be found by
visiting https://www.npmjs.org/package/grunt-lesslint.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

All about style guides
A style guide gives an oversight of your website's elements, such as buttons,
navigation structures, headings, and fonts. It shows the elements in the right
presentation and colors. Creating style guides for your project and website can
help you test your Less code. Style guides will also help other developers and
content publishers of your project.

You may be thinking now that style guides are indeed useful but also time
consuming; for this reason, two tools will be discussed in the following sections.
These tools generate your style guides automatically based on your Less (or compiled
CSS) code. Both tools still require some additional code and effort, but it won't take
too much of your time. Testing your code nearly always pays you back. Also, realize
the big win here: you only have to test the effect of your styles. Less guarantees
that your CSS is already valid, and the Less compiler handles it's optimization. As
promised, it provides more time for your real design tasks.

Building a style guide with StyleDocco
StyleDocco generates documentation and style guide documents from your
style sheets. StyleDocco works very well with Less files too. To create a style guide
with StyleDocco, you will have to add comments to your Less files. The comments
should explain what the style does and also contain HTML example code. The
comments need to be written in Markdown. Markdown is a plain text format that
can be easily converted into HTML. StackOverflow.com uses Markdown for posts
and comments. You can use its help guide to learn more; you will find it by visiting
http://www.stackoverflow.com/editing-help/.

StyleDocco can be installed with npm using the following command:

npm install -g styledocco

You have read about npm in Chapter 1, Improving Web Development with Less.
After installing StyleDocco, you will have to add the Markdown comments to
your Less files.

To see an example of a style guide generated with StyleDocco, open less/nav.less
in your text editor and add the description in Markdown followed by the HTML test
code, as shown in the following code snippet:

/* Construct a navigation structure.

 <ul class="nav">
 item 1
 item 2

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel

[98]

 <li class="active">item 3

*/

To build your style guide, navigate to your Less folder (lessc) in the terminal and
run the following command:

styledocco -n "Less Web Development Essentials Styleguide"
--preprocessor "/usr/local/bin/lessc" --verbose [file path]

In the preceding example, the name of the style guide is set with -n. Mostly, you
don't have to set the –preprocessor option if your file path contains Less files only.
To build a style guide for your Less files, the command should look as follows:

styledocco -n "Less Web Development Essentials Styleguide" less/*

The styledocco command generates a new folder named docs/. This folder
contains an index.html file, which can be opened in your browser. The final
result should look like the following screenshot:

Example of a style guide built with StyleDocco

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

Testing your code with tdcss.js
The tdcss.js framework is another style guide tool that works well with Less and
promotes the usage of test-driven development. The tdcss.js framework can be
downloaded free of charge from GitHub at https://github.com/jakobloekke/
tdcss.js. Also, see http://jakobloekke.github.io/tdcss.js/ for further
information. Unlike StyleDocco, using tdcss.js doesn't change your Less files. You
generate your style guide with snippets of relevant source code from your project.
You can use HTML-comment-style coding, for instance, <!-- : Navigation -->,
to separate them. Snippets are copied and pasted to an HTML document which
forms your style guide and includes styles from your Less code and tdcss.js.
The head section of the HTML document of the example navigation will have the
following structure:

<!-- Your Less code -->
 <link rel="stylesheet/less" type="text/css" href="less/styles.less"
/>
 <script type="text/javascript">less = { env: 'development' };</
script>
 <script src="less.js" type="text/javascript"></script>

<!-- TDCSS -->
<link rel="stylesheet" href="tdcss/tdcss.css" type="text/css"
media="screen">
<script src="http://code.jquery.com/jquery-1.11.0.min.js"></script>
<script src="http://code.jquery.com/jquery-migrate-1.2.1.min.js"></
script>

<script type="text/javascript" src="tdcss/tdcss.js"></script>
<script type="text/javascript">
 $(function(){
 $("#tdcss").tdcss();
 })
</script>

The markup in the body is as follows:

<div id="tdcss">
 <!-- # Navigation -->
 <!-- & Style lists used for navigation. -->
 <!-- : Basic navigation -->
 <ul class="nav">
 item 1
 item 2
 <li class="active">item 3

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel

[100]

See the result of the preceding code by opening http://localhost/tdcss.html in
your browser. The result should finally look like the following screenshot:

Example of a style guide built with tdcss.js

Prebuilt mixins
You already know about searching and finding mixins on the Web. However, using
and reusing well-tested mixins will be a lot easier than that. Other developers have
already built complete libraries and prebuilt mixins which you can use for your
projects. These prebuilt mixins help you write Less code without having to think
about vendor-specific rules that make CSS3 complex. You will be introduced to the
five most used libraries in the following sections. These libraries are as follows:

• Less Elements (http://lesselements.com)
• Less Hat (http://lesshat.madebysource.com/)
• 3L (http://mateuszkocz.github.io/3l/)
• ClearLess (http://clearleft.github.com/clearless/)
• Preboot (http://markdotto.com/bootstrap/)

A more comprehensive list of mixin libraries can also be found at http://lesscss.
org/usage/#frameworks-using-less.

Please understand that you don't have to choose; there is no restriction that you have
to use only one of these libraries. All these libraries have pros and cons; you have to
choose the libraries that best fit your project requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

Globally, all libraries offer you a Less file, which contains the mixins that you can
import in your project. Although some libraries also have some settings, in all cases,
@import "{library-name}"; will be enough to make its mixins available for your
project. Less has no restrictions on including more than one library, but doing this
will give you problems with clashing mixin names. All mixins with the same name
will be compiled into the CSS (if their parameters also match). For this reason, some
libraries also have a prefixed version of these mixins.

Instead of the prefixed versions, using namespaces, as explained in Chapter 3, Nested
Rules, Operations, and Built-in Functions, offers a more stable solution in most cases, as
shown in the following code snippet:

// create a namespace for {library-name}
#{library-name}{@import "{library-name}";}

Make the mixins available using #{library-name} > mixin().

Using single-line declarations for
vendor-specific rules with Less Elements
Less Elements is perhaps the most compact library of the ones discussed in this
chapter. Compact doesn't mean it is not useful. The focus of this library is on the
consolidation of cross-browser prefixes into single, concise declarations.

Remember the vertical background gradient from the beginning of the chapter? You
have seen that you will need at least three declarations, including vendor-specific
rules, when you are supporting modern browsers.

With Less Elements, you can do the same with a single declaration of Less code with
three parameters, as shown in the following code snippet:

element {
.gradient(#F5F5F5, #EEE, #FFF);
 }

The first parameter defines the fallback color used for browsers that don't support
gradients. The gradient goes from bottom to top, where the second parameter sets
the bottom color and the third parameter sets the top color.

The preceding Less code will finally compile into CSS as follows:

 element {
 background: #f5f5f5;
 background: -webkit-gradient(linear, left bottom, left top, color-
stop(0, #eeeeee), color-stop(1, #ffffff));

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel

[102]

 background: -ms-linear-gradient(bottom, #eeeeee, #ffffff);
 background: -moz-linear-gradient(center bottom, #eeeeee 0%, #ffffff
100%);
 background: -o-linear-gradient(#ffffff, #eeeeee);
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#f
fffff', endColorstr='#eeeeee', GradientType=0);
}

In its simplicity, Less Elements offers many useful mixins to build your project with
CSS3 techniques. It provides single-line declarations for all CSS3 properties with
vendor-specific rules and extends this with declarations for layout.

The .columns() mixin divides an element into columns, including a border and a
gap between the columns. Variables for the .columns() mixin are in the order of
column width, column count, column gap, column border color, column border
style, and column border width.

This mixin can be applied on nonreplaced block-level elements (except table elements),
table cells, and inline-block elements such as the body or div elements.

To divide a div element in to three columns with a width of 150 px, you can now
write the following code in Less:

div.threecolumns {
 .columns(40px, 3, 20px, #EEE, solid, 1px);
}

The preceding code compiles into CSS and looks as shown in the following
code snippet:

div.threecolumns {
 -moz-column-width: 150px;
 -moz-column-count: 3;
 -moz-column-gap: 20px;
 -moz-column-rule-color: #eeeeee;
 -moz-column-rule-style: solid;
 -moz-column-rule-width: 1px;
 -webkit-column-width: 150px;
 -webkit-column-count: 3;
 -webkit-column-gap: 20px;
 -webkit-column-rule-color: #eeeeee;
 -webkit-column-rule-style: solid;
 -webkit-column-rule-width: 1px;
 column-width: 150px;
 column-count: 3;
 column-gap: 20px;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

 column-rule-color: #eeeeee;
 column-rule-style: solid;
 column-rule-width: 1px;
}

You can also test this by loading http://localhost/columns.html in your
browser. Please also resize your browser window from small screens to full screen to
see that these columns are responsive by default. The compiled .div.threecolumns
class can be used with the following HTML code:

<div class="threecolumns" role="content">Vestibulum at dolor
aliquam, viverra ipsum et, faucibus nunc. Nulla hendrerit tellus
eu sapien molestie adipiscing. Cras ac tellus sed neque interdum
egestas sit amet vel diam. Aenean congue dolor et elit blandit
commodo. Pellentesque dapibus tellus eu augue ullamcorper dignissim.
Pellentesque pretium a dui a consequat. Curabitur eleifend lectus
vel viverra mollis. Sed egestas bibendum tortor mattis fermentum.
Suspendisse pellentesque facilisis blandit.</div>

The preceding code will result in the following screenshot:

Example of a multi-column layout built with the columns mixin of Less Elements

The .columns() mixin makes use of the CSS Multi-column Layout Module. More
information about this module can be found at http://www.w3.org/TR/css3-
multicol/. Unfortunately, the support for this module by most modern browsers is
not good yet.

Less Elements does not provide any information about the browser support of
the compiled CSS. You must have realized this when using Less Elements in your
project. As mentioned earlier, you can check browser support on the caniuse.com
website. To find out which browsers support this Multi-column Layout Module, you
will have to visit http://caniuse.com/multicolumn. Always check the preceding
module with the requirements of your project. Also, this example shows you why
style guides can be very useful.

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel

[104]

Less Hat – a comprehensive library of mixins
Unlike Less Elements, Less Hat is very comprehensive. At the time of writing this
book, Less Hat contains 86 prebuilt mixins. Less Hat also has a strong relationship
with CSS Hat. CSS Hat is a commercial licensed tool that converts Adobe Photoshop
layers into CSS.

The Less Hat mixins offer the possibility of disabling some browser-specific prefixes.
You should not use this unless you have extremely solid reasons for doing so. By
default, Less Hat uses all the browser prefixes by setting the Less variables to true
as shown in the following code:

@webkit: true;
@moz: true;
@opera: true;
@ms: true;
@w3c: true;

In the preceding code, @w3c refers to the nonprefixed rules that define the standard
property names described by the W3C specification. Less Hat advertises itself
as having mixins that create an unlimited number of shadows, gradients, and
animations. Box-shadow is an example of this. With Less Hat, the box-shadow mixin
can be written as .box-shadow(<offset-x> <offset-y> spread blur-radius
color inset, …).

To try the preceding .box-shadow mixin, you could write it in Less with Less Hat
as follows:

div {
 .box-shadow(30px 30px 5px green inset,-30px -30px 5px blue inset);
}

The preceding code compiles into the following code snippet:

div {
 -webkit-box-shadow: 30px 30px 5px #008000 inset, -30px -30px 5px
#0000ff inset;
 -moz-box-shadow: 30px 30px 5px #008000 inset, -30px -30px 5px
#0000ff inset;
 box-shadow: 30px 30px 5px #008000 inset, -30px -30px 5px #0000ff
inset;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

To inspect this, open http://localhost/boxshadow.html in your browser and you
will see the result of the .box-shadow mixin, as shown in the following screenshot:

Example of the effect of the box-shadow mixin of Less Hat

Indeed, the .box-shadow() mixin of Less Elements doesn't accept multiple shadows,
but the mixin of 3L, discussed in the following section, works with multiple shadows
separated with commas.

Using the 3L library of prebuilt mixins
3L (Lots of Love for Less) is another collection of prebuilt mixins. Besides the standard
single-line declarations, 3L offers something extra. 3L provides mixins for CSS reset or
normalization, as discussed earlier in Chapter 1, Improving Web Development with Less.
You can call these mixins without placing them inside selector blocks as follows:

.normalize();

/* OR */
.reset();

/* OR */
.h5bp();

In the preceding .h5bp() reset, your CSS is based on HTML5 Boilerplate. HTML5
Boilerplate is a professional frontend template for building fast, robust, and adaptable
web applications or sites. You will find more information on Boilerplate by visiting
http://html5boilerplate.com/. 3L not only offers a mixin for HTML5 Boilerplate's
reset, but also contains mixins for HTML5 Boilerplate's helper classes. These mixins
contain a clearfix and mixins for hidden content for browsers or screen readers.

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel

[106]

For instance, .visuallyhidden() can be used to hide the content for browsers but
have this content available for screen readers.

SEO and HTML debugging
SEO (search engine optimization) plays an important role in modern web design.
Correct and valid HTML5 is the requirement for SEO. Also, setting proper titles,
using meta tags for keywords, and descriptions and alt attributes for images will
help your website rank higher.

3L's .seo-helper() mixin will give you a quick insight into the missing elements
and attributes of a web page.

To use this mixin—after importing 3L—you can write it in Less as follows:

html {
.seo-helper();
}

After using the .seo-helper() mixin, your HTML page will contain warnings about
missing titles or meta tags and show a red border around images with a missing alt
attribute, as shown in the following screenshot:

3L's helper class makes missing alt attributes visible

Also, visit http://localhost/indexseo.html to get more insight on how this
class works. After this, you can judge for yourself whether this class is useful or not.
Independent of your judgment, the .seo-helper() mixin shows you how Less can
also be applied for functions other than a website's styles.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

ClearLess – another library of prebuilt mixins
ClearLess also has a relationship with HTML5 Boilerplate. Just like 3L, ClearLess
offers mixins for HTML5 Boilerplate and helper classes. Besides this, ClearLess also
makes use of Modernizr. Modernizr is a JavaScript library that detects HTML5 and
CSS3 features in the user's browser. Modernizr adds additional classes to the html
element of your HTML for detected features. With Modernizr, your html element
will look as shown in the following code snippet:

<html id="modernizrcom" class="js no-touch postmessage history
multiplebgs boxshadow opacity cssanimations csscolumns cssgradients
csstransforms csstransitions fontface localstorage sessionstorage
svg inlinesvg no-blobbuilder blob bloburls download formdata wf-
proximanova1proximanova2-n4-active wf-proximanova1proximanova2-
i4-active wf-proximanova1proximanova2-n7-active wf-
proximanova1proximanova2-i7-active wf-proximanovacondensed1proxima
novacondensed2-n6-active wf-athelas1athelas2-n4-active wf-active"
lang="en" dir="ltr">

This list of class names tells you whether a feature is available or not. So, the browser
used to produce the preceding code offers support for box-shadow, opacity, and so
on. With Modernizr, you will have conditional classes that can be used in your Less
code. Also, ClearLess makes use of these classes.

Alongside the Modernizr mixins, ClearLess has mixins for icons and CSS
sprite images.

CSS sprite images is a technique that dates back to at least seven years ago. A website's
images are added to a single image, the sprite. If the browser requests an image, the
sprite will be loaded as the background image. SpriteMe (http://spriteme.org/)
can help you create sprites for your projects. CSS is used to show the requested image
containing a part of the sprite. Loading one big sprite, which can be cached, instead of
several small images will reduce the number of HTTP requests needed by the browser
to show the page. The fewer the HTTP requests, the faster the page will load.

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel

[108]

To demonstrate this, use the simple sprite of the Less image from the code bundle of
this chapter (less-sprite.png) as shown in the following screenshot:

Example of a simple sprite image

To use the sprite image, you could write it in Less as follows:

#clearless {
@import "clearleft-clearless-63e2363/mixins/all.less";
@sprite-image: "../images/less-sprite.png";
@sprite-grid: 80px; //image height
}

.logo {
 #clearless > .sprite-sized(0,0,200px,80px);
 &:hover {
 #clearless > .sprite-sized(0,1,200px,80px);
 }
}

This code is also available in less/sprite.less. Please notice that the #clearless
namespace got its own scope, so @sprite-grid and @sprite-grid should be
defined inside the namespace. Variables are set by redeclaration.

The compiled CSS of the preceding code will look as follows:

.logo {
 background-image: url("../images/less-sprite.png");
 background-repeat: no-repeat;
 background-position: 0px 0px;
 width: 200px;
 height: 80px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

.logo:hover {
 background-image: url("../images/less-sprite.png");
 background-repeat: no-repeat;
 background-position: 0px -80px;
 width: 200px;
 height: 80px;
}

Load http://localhost/index.html to see the effect of the preceding code.

Finally, it should be mentioned that ClearLess defines some mixins to construct
a grid. These mixins will be explained to you in the next section because they are
adopted from Preboot.

Using Preboot's prebuilt mixins for your
project
Preboot was originally written by Mark Otto (@mdo) and is a comprehensive and
flexible collection of Less utilities. Preboot is the predecessor of Twitter's Bootstrap.
Bootstrap is a frontend framework for developing responsive, mobile-first projects
on the Web. You will learn more about Bootstrap in Chapter 6, Bootstrap 3, WordPress,
and Other Applications. Bootstrap improved the original Preboot code. Finally, many
of the Less variable and mixin improvements from Bootstrap were brought back in
Preboot 2.

Preboot comes with mixins to build a grid system because of its relationship
with Bootstrap. This grid system creates a row that contains 12 columns. Open
http://localhost/prebootgrid.html from the downloaded code bundle in your
browser to see an example with two rows. The first grid row contains three columns
and the second row contains two columns. This grid is responsive by default; you
can see this by making your browser window smaller using the example grid. If
the screen width is less than 768 pixels, the columns in the grid will stack under
each other instead of being horizontal. The following code example only shows the
compiled CSS without the responsive classes.

With Preboot, you can write the following code in Less:

.col-a-half {

.make-column(6);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel

[110]

The preceding code compiles into CSS as follows (it is nonresponsive):

.col-a-half {
 min-height: 1px;
 padding-left: 15px;
 padding-right: 15px;
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
 float: left;
 width: 50%;
}

In Chapter 5, Integrate Less in Your Own Projects, you will find another example that
makes use of Preboot's grid and discusses the responsive nature of it in more detail.

Preboot sets some variables to define the grid as shown in the following code snippet:

// Grid
// Used with the grid mixins below
@grid-columns: 12;
@grid-column-padding: 15px; // Left and right inner padding
@grid-float-breakpoint: 768px;

Also, other values such as basic colors are predefined as follows:

// Brand colors
@brand-primary: #428bca;
@brand-success: #5cb85c;
@brand-warning: #f0ad4e;
@brand-danger: #d9534f;
@brand-info: #5bc0de;

In fact, Preboot is not a complete CSS framework; on the other hand, it's more than
just a library of prebuilt mixins.

Integrating other techniques into your
projects using Less
As well as prebuilt mixins, there are some other techniques that can be easily
integrated in to your projects using Less.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

Using iconic fonts
As the name suggests, iconic fonts are sets of icons defined as a font. Iconic fonts can
replace image icons in your projects. The main reason for using iconic fonts instead
of images and the reason they are discussed here is that iconic fonts, just like any
normal font, can be fully manipulated with CSS. In your project, you can set the
size, color, and shadows of the used iconic fonts with Less. The primary reason for
using iconic fonts is to benefit the load time of your website; only one HTTP request
is needed to load them all. Iconic fonts will look good on different resolutions and
displays too.

In this book, iconic fonts were already used in Chapter 3, Nested Rules, Operations, and
Built-in Functions. Font Awesome was loaded from CDN in these examples. Font
Awesome also provides a bundle of Less files from GitHub at https://github.
com/FortAwesome/Font-Awesome/tree/master/less. You can use these files to
integrate Font Awesome in your project by performing the following steps:

1. Copy the font-awesome/ directory into your project.
2. Open your project's font-awesome/less/variables.less file and edit the

@fa-font-path variable to point to your font directory, @fa-font-path:
"../font";.

3. Import the Font Awesome Less file in your main Less file, @import "font-
awesome-4.0.3/less/font-awesome.less";.

After performing the preceding steps, you can use the following snippet of code in
your HTML document:

<ul class="fa-ul">
 <i class="fa-li fa fa-check-square"></i>List icons (like
these)
 <i class="fa-li fa fa-check-square"></i>can be used
 <i class="fa-li fa fa-spinner fa-spin"></i>to replace
 <i class="fa-li fa fa-square"></i>default bullets in lists

The preceding code when opened in your web browser will result in the
following screenshot:

HTML list with Font Awesome items

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel

[112]

You will find the Less code of the preceding HTML list in less/font-awsome.less
of the downloadable files. Please inspect this file. You will see that you don't have to
change Font Awesome's original files to set @fa-font-path. The @fa-font-path
variable will be set by redeclaration and uses the last declaration wins rule as
explained before in Chapter 2, Using Variables and Mixins.

You can find more examples of Font Awesome usage by visiting
http://fontawesome.io/examples/.

Also, other iconic fonts such as Glyphicons for Bootstrap can be used with Less (see
https://github.com/twbs/bootstrap/blob/master/less/glyphicons.less).
However, in cases where you find iconic fonts without Less files, you now have
enough knowledge to create the required Less code yourself.

Try to write the required Less code to integrate Meteocons (http://www.
alessioatzeni.com/meteocons/) into your project as an exercise or perform
the following steps:

1. Start by downloading the fonts from http://www.alessioatzeni.com/
meteocons/res/download/meteocons-font.zip.

2. In this zip file, you will find four files: meteocons-webfont.eot,
meteocons-webfont.svg, meteocons-webfont.ttf, and meteocons-
webfont.woff. These are the different formats required to show the
Meteocons in different browsers.

3. Copy these files to the fonts/ folder of your project. You will also
find stylesheet.css included with these font files. This file contains the
@fontface styles for Meteocons. If you inspect the Font Awesome Less files,
you will find the same kind of styles. The @fontface declaration is required
to use the font in your project.

Now, you should remember the Less Hat prebuilt mixins. Less Hat has the
fontface mixin, .font-face(@fontname, @fontfile, @fontweight:normal,
@fontstyle:normal).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[113]

Using this fontface mixin, you can add the following code to your Less code:

#lesshat {@import "lesshat/lesshat.less";}

@font-face {
#lesshat > .font-face("Meteocons", "../fonts/meteocons-webfont");
}

[data-icon]:before {
 font-family: 'Meteocons';
 content: attr(data-icon);
}

The preceding code will compile into CSS as follows:

@font-face {
 font-family: "Meteocons";
 src: url("../fonts/meteocons-webfont.eot");
 src: url("../fonts/meteocons-webfont.eot?#iefix") format("embedded-
opentype"), url("../fonts/meteocons-webfont.woff") format("woff"),
url("../fonts/meteocons-webfont.ttf") format("truetype"), url("../
fonts/meteocons-webfont.svg#Meteocons") format("svg");
 font-weight: normal;
 font-style: normal;
}
[data-icon]:before {
 font-family: 'Meteocons';
 content: attr(data-icon);
}

The preceding CSS code enables you to use the following HTML code:

Link

The preceding code in HTML will look like the following screenshot:

Hyperlink with Meteocon

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel

[114]

Earlier, you saw how Font Awesome icons can be added by class name. To add this
functionality to the Meteocons, you will have to write some Less code. The following
diagram shows the letter for each icon of this font:

N/A °C °F

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y Z 0 1 2 3

4 5 6 7 8 9

! “ # $ % &

‘ () * +
Meteocons font

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[115]

Now, add a class declaration into your Less code for each icon as follows:

. meteocons-sun { &:before { content: "\2a"; } }

In the preceding example, .meteocons-sun is your class name, and \2a represents
the hexadecimal value of a similar character. 2A hexadecimal is 42 decimal, and the
* (asterisk) has an ASCII value of 42. Instead of a hexadecimal value, you can also
use octal or decimal (for the first 128 printable characters). Sometimes, the \u of
unicode is prepended, such as \u002a in the preceding code.

If you do add these class declarations, your list will look like the following
code snippet:

.mc-light-sunrise:before {
 content: "\0041";
}
.mc-light-sunshine:before {
 content: "\0042";
}
.mc-light-moon:before {
 content: "\0043";
}
.mc-light-eclipse:before {
 content: "\0044";
}
and so on

Now, you have the basics for an iconic font, and you can extend your code. For
instance, add the following code to set the size of the font:

.mc-2x { font-size: 2em; }

.mc-3x { font-size: 3em; }

.mc-4x { font-size: 4em; }

.mc-5x { font-size: 5em; }

In the download section of this chapter, you will find the complete Less code to use
Meteocons the same way as Font Awesome in less/meteocons. As you see, most of
Font Awesome's code can be reused. Please visit http://localhost/indexmeteo.
html to find out how to use this code.

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Reinventing the Wheel

[116]

Retina.js
High-density devices have more pixels per inch or centimeter than normal displays.
Apple introduced the term Retina for its double-density displays. If you zoom in on
an image (or scale it up), it will become blurred. This is the problem web designers
have to solve when designing for high-density devices. You may be wondering what
this has to do with Less. CSS, in combination with media queries (you will learn more
about media queries in Chapter 5, Integrate Less in Your Own Projects), can prevent
your images from becoming blurred on high-density displays.

To understand what happens, you have to realize that CSS pixels are, in fact, device
independent. CSS pixels are used to give physical dimensions to the elements in
the browser. On normal screens, a CSS pixel matches a device pixel. High-density
displays have more device pixels than a CSS pixel; in the case of Retina, they have
four times the number of pixels. More and smaller pixels make it impossible to see
the individual pixels with the human eye and should give a better user experience.

Retina displays an image of 300 CSS pixels width that requires 600 device pixels
in order to keep the same physical size. Now you can prevent your images from
blurring by using a bitmap with a higher resolution (CSS pixels) and scale it down
with HTML or CSS.

On a normal display, your HTML will look as follows:

While on a Retina display, you will show the same image with the following
code snippet:

Currently, there is a convention of adding @2x to the names of high-density images,
such as example@2x.png.

You should now understand that you can use Less to write efficient code to
give these different images the right CSS dimensions. The retina.js library
(https://github.com/imulus/retinajs) helps you handle high-density
images and displays; it combines JavaScript and Less to write your Retina code.

For normal images, you have to use the following code snippet:

<img src="/images/my_image.png" data-at2x="http://example.com/my_
image@2x.png" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[117]

The preceding code will be handled by JavaScript, but you will have to use Less to set
your background images. Here, background refers not only to the page background,
but to every background set by CSS. Most modern designs use background images
for layout; also, accessibility rules require decorative images set by CSS.

With retina.js, you can write the following code in Less:

.logo {
 .at2x('/images/my_image.png', 200px, 100px);
}

The preceding code will compile into CSS as follows:

.logo {
 background-image: url('/images/my_image.png');
}

@media all and (-webkit-min-device-pixel-ratio: 1.5) {
 .logo {
 background-image: url('/images/my_image@2x.png');
 background-size: 200px 100px;
 }
}

Also, the other libraries of prebuilt mixins mentioned earlier will have mixins to set
Retina backgrounds.

Summary
In this chapter, you have learned how to keep your code clean and test it using style
guides. You have learned how to use libraries with prebuilt mixins, which help you
develop your Less code faster and more securely. Last but not least, you have learned
how to use Less and iconic fonts and make your projects Retina-ready.

In the next chapter, you will learn how to integrate Less in your projects or start a
project from scratch with Less. You will also learn how to organize your project files
and reuse your old CSS code. And finally, you will build a responsive grid with
media queries.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your
Own Projects

Now it's time to integrate Less in your workflow and projects. In this chapter,
you will learn to migrate your current projects or start a new project from scratch
using Less. The techniques and tools to convert your CSS code to Less code will be
discussed, and finally, you will learn to build and use responsive grids with Less.

This chapter will cover the following topics:

• Importing CSS into Less
• Migrating your projects to Less
• Starting a project from scratch
• Media queries and responsive design
• Using grids in your projects and designs

While working with Less and seeing how it addresses the problems of duplicate
code and the inability to reuse your CSS, you should have wondered when to start
using Less for your projects. Although this may be the most important question of
this book, the answer is quite simple. You will have to start now! The problems with
CSS can be some defects in your design process. There will never be an excuse to not
solve the defects as soon as they are detected. If you don't start now, you probably
never will, and you will end up spending too much time debugging your CSS code
instead of working on your real design tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[120]

Importing CSS into Less
As you already know now, valid CSS is also valid Less code. CSS code can be
imported into Less. There are different ways to do this. After importing your CSS,
you can run the result through the compiler. This offers you an easy way to start
using Less in your current project.

Consider creating a style guide before starting to import your CSS code. Style guides
help you test your code, as described in Chapter 4, Avoid Reinventing the Wheel. Also,
remember that Less is a CSS preprocessor. This means you have to compile your
Less code into CSS before taking it into production. Client-side compiling with less.
js should only be used for test purposes! Only importing your CSS and compiling
it back into CSS again makes no sense. After importing, you should start improving
your code. Importing CSS also offers the opportunity to combine the pre-existing
CSS with newly written Less code and allows you to do the conversion to Less
iteratively and gradually.

Using the @import rule
Earlier, you saw that the @import rule in Less is used to import Less files into your
project. This rule in Less is an extended version of the same rule in CSS.

In the examples in the preceding chapters, the @import rule was only used to import
Less files. By default, each file is imported once. The complete syntax is as follows:

@import (keyword) "filename";

There are six keywords that can be used with this rule: reference, inline,
less, css, once, and multiple. The reference keyword, for example, @import
(reference) "file.less", will make mixins and classes from file.less
available, without compiling them into the resulting CSS.

This can easily be shown with an example. You can download all the example
code of all the chapters of this book from the Packt website (www.packtpub.com).
The example layout from the preceding chapters will be used here again. Please
remember that the main file of this project, styles.less, imports the other project
files. Now you can use this to reuse the navbar. Start by creating a new file and write
the following code into it:

@import (reference) "styles";
.nav:extend(.nav all){};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

These two lines will compile into the following code:

.nav {
 list-style: none outside none;
 padding: 0;
}
.nav li a {
 text-decoration: none;
 color: #000000;
 width: 100%;
 display: block;
 padding: 10px 0 10px 10px;
 border: 1px solid #004d00;
 margin-top: -1px;
}
.nav li a:hover {
 color: #ffffff;
 background-color: #004d00;
}
.nav li.active a {
 color: #000000;
 background-color: #00b300;
}
.nav li:first-child a {
 border-radius: 15px 15px 0 0;
}
.nav li:last-child a {
 border-radius: 0 0 15px 15px;
}

Please also notice that the preceding result contains the values as defined in
variables.less from the original project.

The inline keyword is used to import code that is not compatible with Less.
Although Less accepts standard CSS, comments and hacks won't get compiled
sometimes. Use the inline keyword to import the CSS as it is into the output.
As shown in the following code, the inline keyword differs quite a bit from
the css keyword. The less keyword forces the imported code to be compiled.
When using @import (less) "styles.css", all code will be compiled as usual.
In the meantime, the css keyword forces @import to act as a normal CSS import.
The following code shows the difference between inline and css:

@import (css) "styles.css";

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[122]

The output of the preceding code is as follows:

@import "styles.css";

Imported style sheets (with @import) in your compiled CSS code are declared before
all the other rules. These style sheets can play a role in the CSS precedence, which
is discussed in Chapter 1, Improving Web Development with Less. For this reason, you
cannot apply advanced techniques such as namespacing, and you should import files
that are not created using Less at the beginning.

CSS 2.1 user agents must ignore any @import rule that is present inside a block or
after any nonignored statement, other than @charset or @import (http://www.
w3.org/TR/CSS21/syndata.html#at-rules). If you import a file with the same
name twice, only one will be compiled by default. The same will happen if you use
the once keyword; on the other hand, if you use the multiple keyword, the file will
be compiled in the output twice. The following code will give you an example of
multiple output when using the multiple keyword:

If the styles.less file contains the following code:

p {
color: red;
}

And your Less code is as follows:

@import (multiple) "style";
@import (multiple) "style";

The preceding code will output the following CSS code:

p {
 color: red;
}
p {
 color: red;
}

Migrating your project
With the different import rules, you can start using Less in your project without
having to change your code. After importing your CSS, you can start defining
variables and using mixins step by step. Always check the output of your new
code before you start using it for production.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

Please remember that style guides can help you manage the migration
of your project, and also don't forget that you have to compile your
Less on the server side into CSS code before using it in production.

Organizing your files
Try to organize your files in the same way as in the preceding examples. Create
separate files for your project's variables and mixins. If your project defined a style
sheet in project.css earlier, your main Less file can look, for instance, like the
following code:

@import "reset.less";
@import "variables.less";
@import "mixins.less";
@import (less) "project.css";

You will import your original project.css in the preceding code; alternatively, you
can rename it as project.less. Also notice that you will finally compile a new CSS
file, which will be used in your project. It's possible to use the same name for this file;
make sure that you do not overwrite your original CSS file. Although your new CSS
files should apply the same styles, these files are better organized and Less grantees
they contain only valid CSS. The compiler will also compress the CSS file.

Converting CSS code to Less code
In the process of migration, you may prefer to not have to convert your code step
by step. There are some tools available that can convert CSS code to Less code. These
tools should be used with care. Lessify helps you organize your CSS code into Less
code. Lessify puts rules for the same element or class together. You can use Lessify
by visiting http://leafo.net/lessphp/lessify/.

Consider the following CSS code:

p {
 color: blue;
}
p a {
 font-size:2em;
}
p a:hover {
 text-decoration: none;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[124]

After using Lessify, the preceding CSS code compiles into the following Less code:

p {
 color:blue;
 a {
 font-size:2em;
 }
 a:hover {
 text-decoration:none;
 }
}

You can find another tool called CSS2Less at http://css2less.cc/. Also, this tool
only groups class and element rules. Lessify and Css2Less can help you a little when
organizing your styles. Neither tool works with media queries.

From all that you have learned so far, it seems like a good practice to start your
project by developing your Less code. So, start your project by building a style
guide using Less.

Your project.less file can look like the following code:

@import "reset.less";
@import "variables.less";
@import "mixins.less";

Integrate the project.less file with the client side less.js compiler into your style
guide. After this, start adding your design elements or alternatively, add comments
in your code.

When you are done with your style guide, you can start building your final
HTML code. If you have to build a responsive website, you should first determine
which screen sizes you will need. For instance, mobile, tablet, and desktop can be a
good choice.

To better understand how you can use Less in this stage of your process, the
following two sections describe the role of CSS media queries in responsive
design and teach you how to use grids.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

Media queries and responsive design
Media queries is a CSS3 module and is a W3C candidate recommendation since
June 2012. Media queries add the possibility of applying a style sheet to CSS only
when a media query evaluates as true. A media query evaluates the device's type
and device's features. The device's types are screen, speech, and print, among others,
and the features are width, device-width, and resolution, among others.

Nowadays, the screen type and device's width play an important role in responsive
web design. With the use of media queries, someone can restrict CSS rules to a
specified screen width and thus change the representation of a website with varying
screen resolutions.

A typical media query will look like the following line of code:

@media { ... }

For instance, the following media query sets the font color to black when the
viewport's width is larger than 767 pixels:

@media screen and (min-width: 768px) {
 color:black;
 //add other style rules here
}

In the preceding code, we can see that all the style rules between the accolades are
only applied if the screen width is 768 pixels or larger. These style rules will follow
the normal cascading rules.

Making your layout fluid
Until now, your layout has had a fixed width defined by @basic-width. A fluid
design defines its widths as a percentage of the viewport or browser window.

To make your layout fluid, define @basic-width: 900px; in less/responsive/
project.less. This set value will not define the width of your design any more
but will only set the max-width variable after your changes.

After this, open less/responsive/mixinsresponsive.less in the .center-
content() mixin and change width:@basic-width; to max-width:@basic-width;.

The header is now fluid, without any further changes. The footer columns are also
based on @basic-width, so you will have to change them too.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[126]

The width of the footer columns is set by the following code:

width: ((@basic-width/3)-@footer-gutter);

Please change the width of the footer columns in less/responsive/footer.less
using the following code:

width: ~"calc((1/3 * 100%) - @{footer-gutter})";

Browser support for the calc() function can be checked by visiting
http://caniuse.com/#feat=calc. Also remember the note on calc() and the
use of string interpolation from Chapter 1, Improving Web Development with Less. Less
code is stateless, so these width calculations should be done by CSS in the browser.
The browser has the real width in pixels the moment the CSS has been loaded, so the
browser can calculate the column width in pixels and render it.

Finally, you will have to change less/contentresponsive.less and add the media
queries to it. If the screen width is smaller than 500 pixels, the navigation and content
should stack in your layout.

First, make #content and #sidebar fluid by setting their width to width: 2 / 3
* 100%; and width: 1/ 3 * 100%;, respectively. Now, the width is fluid and
you can add the media queries. For #content, you should change the code into the
following code:

 width: 2 / 3 * 100%;
 float:left;
 @media (max-width:500px) {
 width:100%;
 float:none;
 }

The preceding code sets the width of #content to 100% if the screen width is less
than 500 pixels. It also removes the float of the element. You should do the same
for #sidebar.

After these changes for a screen width of 500 pixels, the navigation stacks below
the content.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

How to interchange the position of the navigation and content for a screen
with a screen width less than 500 pixels can be seen at http://localhost/
indexresponsivechange.html. You can accomplish this in two steps. First,
interchange the content of #content and #sidebar inside your HTML document.
Open http://localhost/indexresponsivechange.html and compare the source
code with http://localhost/indexresponsive.html. After these changes, the
sidebar will show on the left-hand side of the screen. To move the sidebar to the right,
you should set its float to right instead of left, as shown in the following code:

 //one third of @basic-width
 #sidebar {
 width: 1 / 3 * 100%;
 float:right;
 @media (max-width:500px) {
 width:100%;
 float:none;
 }
 }

On a small screen, the layout will now look like the following screenshot:

An example of how your layout could look on a mobile phone

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[128]

Testing your layouts on a mobile phone
You will surely check your responsive layout on your mobile phone too.
Make sure that you add the following additional line of code in the head
of your HTML document:

<meta name="viewport" content="width=device-width, initial-
 scale=1.0">

The preceding code forces the mobile browser to load your website in a viewport
that is equal to the screen width of your device. By default, mobile browsers load
websites in a viewport that is larger than the screen size. Doing this lets nonmobile
websites load as intended on a big screen. After loading the website, it's up to the
user to scroll and zoom into the results. If your optimized mobile layout loads in a
viewport with a width larger than 500 pixels, the media queries won't work, forcing
the viewport to the device's screen dimensions, preventing the media query from
not being applied. Note that this also means you will have to test this example with
a mobile phone for which the screen is not wider than 500 pixels. You can also test
your designs on websites such as http://www.responsinator.com/.

Coding first for mobile
Nowadays, it's common to write the styles for mobile devices first and then use
media queries to alter them to fit bigger screens. Examples of the mobile-first
principle of coding can be found in header.less and content.less from the files
of your example layout. Also open less/responsive/footer.less and see how the
media query adds the float:

 @media (min-width:501px) {
 float: left;
 width: ((@basic-width/3)-@footer-gutter);
 }

This example shows a mobile first way of coding. Elements stack by default and
become horizontal when the screen size grows. Notice that older browsers such as
Internet Explorer 8 do not support media queries and will always show you the
stacked version.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

Using grids in your designs and work
flow
The preceding media query example did not use a grid. You may be wondering
what a grid is and why you should use it. Grid-based layouts divide your design
into a collection of equal-sized columns and rows. Content and graphical elements
can be organized according to this layout. Grids help in creating a logical and formal
structure for designs. It prevents inconsistencies between the original design and the
final implementation in HTML as designers and developers work with the same grid.

Grids are also helpful in responsive design, because the grid's columns can easily be
rearranged to fit different screen widths.

In the preliminary chapters of this book you already read about CSS modules that
defined layout structures. Flex boxes and columns can be used to define CSS layouts
and grids. Although these layouts are responsive by default or can easily be defined
as responsive, they are not the common way to define your CSS layouts yet. As
mentioned earlier, most modern browsers are not ready to support these modules.
Luckily, there are alternative ways to define a grid with CSS.

The width of the columns of your grid can be defined as a percentage of the grid or a
fixed width. Fluid grids define their widths as a percentage of the viewport. In fluid
grids, the column widths vary with the screen width. Fluid layouts can rearrange
the content to occupy the available screen width, so the user has to scroll less. On the
other hand, designers have less control over the exact representation of the design.
For this reason, the majority of responsive grids are a hybrid of fluid and fixed grids.

The role of CSS float in grids
The CSS float property is a position property in CSS; the float pushes the elements
to the left (or right) side of the screen and allows other elements to wrap around it.
For this reason, CSS float plays an important role in most CSS grids.

An example will help you understand how this works. You will create a grid with
two columns. Start writing the Less code for a fixed grid. The example is as follows:

@grid-container-width: 940px;
@column-number: 2;

.container {
 width: @grid-container-width;

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[130]

 .row {
 .col {
 float: left;
 width: (@grid-container-width/@column-number);
 }
 .col2{
 width: 100%;
 }
 }
}

You can use the compiled CSS of the preceding code with the following HTML code:

<div class="container">
 <div class="row">
 <div class="col">Column 1</div>
 <div class="col">Column 2</div>
 </div>
 <div class="row">
 <div class="col2">Column 3</div>
 </div>
</div>

You can inspect the result of the preceding code by visiting http://localhost/
grid.html from the downloadable example code of this book.

Now, you have an example of a fixed grid. This grid can be made fluid by changing
the fixed width using the following Less code:

@grid-container-width: 100%;

In this grid, the .container class holds the grid. This container contains rows
(defined) with the .row class. You have to define only two extra classes because this
grid has two columns. The first class, .col, defines a single column and the second
class, .col2, defines a double column.

Making your grid responsive
To make grids responsive, you have to define one or more break points. Break
points define the screen widths at which a website responds to provide a suitable
layout; below or above the break point the grid can provide a different layout. In the
example grid, you can describe two situations. In the first situation, below the break
point (for instance 768 px), the screens are small. On small screens (keep a mobile
phone screen in mind), the columns of the grid should stack. Above the break point,
for tablet and desktop screens, the grid should become horizontal and the columns of
the grid rows will float next to each other.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

In Less, you can write the first situation for small screens using the following code:

.container {
 width: @grid-container-width;
 .row {
 .col, .col2 {
 width: 100%;
 }
 }
}

All columns get a width of 100% of the viewport and none of them float. Starting
your code with the smallest screens first will generate a "mobile-first" grid. Mobile
first designs start with a basic design for small screens (and mobile browsers, which,
not always, have full CSS and JavaScript capabilities) and rearrange and add content
when the screen size is bigger. You already saw that the grid became horizontal
for larger screens. Other examples can be the navigation, which has got another
representation, or an image slider, which is only visible for desktop users.

Have a go at making your grid responsive now by adding a media query and
defining a break point in Less, as shown in the following code:

@break-point: 768px;

.container {
 width: @grid-container-width;
 .row {
 .col, .col2 {
 width: 100%;
 }
 @media(min-width: @break-point) {
 .col {
 float: left;
 width: (@grid-container-width/@column-number);
 }
 }
 }
}

The preceding code compiled into CSS code will look like the following code:

.container {
 width: 100%;
}
.container .row .col,
.container .row .col2 {

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[132]

 width: 100%;
}
@media (min-width: 768px) {
 .container .row .col {
 float: left;
 width: 50%;
 }
}

It's easy to see that now the .row classes only float on screens wider than 768 pixels.
Width columns will stack if the screen size is less than 786 pixels.

The role of the clearfix
In the preceding example, columns became horizontal by applying float:left to
them. The clearfix() mixin clears the float of an element after it has been rendered
without additional markup, so it can be used for the .row classes of the grid. Using
these clearfixes guarantees that your elements only float in their own row.

Using a more semantic strategy
In the previous section, you built a grid using div elements and CSS classes. Many
CSS frameworks, such as Twitter's Bootstrap and ZURB Foundation, construct their
grids this way. Critics of the approach claim that it breaks the semantic nature of
HTML5. For this reason, they sometimes even compare it with the old-school way
of defining layouts with HTML tables. HTML5 introduces semantic tags, which not
only describe the structure but also the meaning of a document. For instance, the
header tag is semantic; everyone knows what a header is and browsers know how to
display them.

Using mixins instead of classes could help you make your grids more semantic.

An example of such a mixin is the following Less code:

.make-columns(@number) {
 width: 100%;
 @media(min-width: @break-point) {
 float: left;
 width: (@grid-container-width* (@number / @grid-columns));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

The preceding code can be compiled using the following Less code:

/* variables */
@grid-columns: 12;
@grid-container-width: 800px;
@break-point: 768px;

header,footer,nav{.make-columns(12);}
main{.make-columns(8);}
aside{.make-columns(4);}

The HTML for the preceding CSS code will look like the following code:

<header role="banner"></header>
<nav role="navigation"></nav>
<main role="main">
 <section></section>
</main>
<aside role="complementary"></aside>
<footer role="contentinfo"></footer>

Please note that in the preceding code, @number sets the total width to @number times
the width of a column, and the total number of columns in the preceding grid will be
fixed to 12.

Building your layouts with grid classes
The .make-columns() mixin can also be used to create your grid classes, as shown
in the following code:

.make-grid-classes(@number) when (@number>0) {
 .make-grid-classes(@number - 1);
 .col-@{number} {
 .make-columns(@number);
 }
}
.make-grid-classes(12);

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[134]

The preceding code will compile into the following CSS code:

.col-1 {
 width: 100%;
}
@media (min-width: 768px) {
 .col-1 {
 float: left;
 width: 66.66666666666666px;
 }
}
.col-2 {
 width: 100%;
}
@media (min-width: 768px) {
 .col-2 {
 float: left;
 width: 133.33333333333331px;
 }
}
…
.col-12 {

 width: 100%;

}

@media (min-width: 768px) {

 .col-12 {

 float: left;

 width: 800px;

 }

}

In the preceding code, the mixins to build the grid classes are called recursively.
Please recall Chapter 3, Nested Rules, Operations, and Built-in Functions, in which
you have already seen how to use guards and recursion to construct a loop.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

Building nested grids
If you set @grid-container-width to 100% and make your grid fluid, the
.make-columns() mixin can also be used to build nested grids.

Visit http://localhost/nestedgrid.html for an example of such a nested grid.

In HTML, you could write the following code to create a page with a header, content
part, sidebar, and footer:

<div class="container">
<header role="banner">header</header>
<section id="content" role="content">
 <div class="content-column">Column 1</div>
 <div class="content-column">Column 2</div>
 <div class="content-column">Column 3</div>
</section>
<aside role="complementary">sidebar</aside>
<footer role="contentinfo">footer</footer>
</div>

The content part will be divided into three equal-sized columns. To archive the
preceding code, you could write the following code in Less:

.make-columns(@number) {
 width: 100%;
 @media(min-width: @break-point) {
 float: left;
 width: (@grid-container-width* (@number / @grid-columns));
 }
}

/* variables */
@grid-columns: 12;
@grid-container-width: 100%;
@break-point: 768px;

header,footer{.make-columns(12);}
section#content {
 .make-columns(8);
 div.content-column {
 .make-columns(4);
 }
}
#sidebar{.make-columns(4);}

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[136]

Here, the .make-columns(4); statement for div.content-column will create
a width of 33.3% (4 / 12 * 100%). The 33.3 percent will be calculated of the direct
parent. The direct parent of div.content-column is section#content in this
example. The section#content HTML element itself gets a width of 66.6 percent
(8 / 12 *100%) of the viewport.

Please note that if you should use the preceding grid in your
project, you should separate your code into different files. If you
create different files for your variables and mixins, your code will
be clear and clean.

Alternative grids
In the preceding example, you have seen the grid defined with columns that
become horizontal when the screen size increases. These grids use CSS float to align
the columns next to each other. In some situations, mostly for older browsers, this
may cause some problems in pixel calculation. This problem is sometimes described
as the "subpixel rounding" problem. Although box-sizing: border-box; will fix
related issues, as described in Chapter 1, Improving Web Development with Less, one can
choose to use a different grid definition.

CSS isolation provides a solution. CSS isolation is not easy to understand. Susy
(http://susydocs.oddbird.net/) describes it as follows:

Every float is positioned relative to its container, rather than the float before it. It's
a bit of a hack, and removes content from the flow, so I don't recommend building
your entire layout on isolated floats, but it can be very useful as a spot-check when
rounding errors are really causing you a headache.

CSS isolation is originally a part of Zen Grids (http://zengrids.com/). Zen Grid
implementation has been written in SCSS/SASS. It will be relatively easy to rewrite
this to Less; you could try this as an exercise. If you want to try this grid system,
you can also download some example Less code from https://github.com/
bassjobsen/LESS-Zen-Grid.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

Building your project with a responsive
grid
In the preceding examples, only the grid columns were defined. This should give
you a good and realistic impression of how grids work and how to use them. A
complete grid code also defines responsive containers and row classes. Most grids
will also have so-called gutters between their columns. A gutter (mostly fixed) is a
space that separates columns. This also means that a width spanning two columns
include one gutter.

In Chapter 4, Avoid Reinventing the Wheel, you have learned to reuse Less and prebuilt
mixins; you can do the same for grids. It won't be necessary to write the complete
code yourself. Frameworks such as Twitter's Bootstrap, the Golden Grid System
(http://goldengridsystem.com/), or Less Framework 4 (http://lessframework.
com/) will provide you with all the Less code and mixins you need. Some of these
frameworks will be discussed in further detail in Chapter 6, Bootstrap3, WordPress,
and Other Applications.

The following examples will use Preboot's grid mixins to build your project's grid.
Finally, you will rebuild the layout example you used earlier.

Using Preboot's grid system
Preboot's grid system enables you to build mobile-first grid layouts with a few
variables and mixins. As you have seen earlier, you can use Preboot's mixins to
create a semantic grid or define more general grid classes.

Preboot defines the grid's variables, which are shown as follows:

@grid-columns: 12;
@grid-column-padding: 15px;
@grid-float-breakpoint: 768px;

In the preceding code snippet, @grid-column-padding defines the width of the
gutter, as mentioned earlier. The grid columns are coded with the mobile-first
approach. This means that by default, they stack vertically and float horizontally
when the viewport's width is equal to or is wider than @grid-float-breakpoint.
Let's not forget, of course, that @grid-columns sets the number of grid columns.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[138]

Preboot doesn't provide a container that holds the rows of the grid. You could
define this variable yourself to define a maximum width for your grid, as shown
in the following code:

@grid-width: 960px;

There are three available mixins for each part of a standard grid system, which are
as follows:

• .make-row(): This provides a wrapper for the columns to align their content
via a negative margin and clear the floats

• grid.make-column(n): This is used to generate n number of columns as a
percentage of the available grid columns (set via a variable to 12 by default)

• .make-column-offset(n): This pushes a column to the right by n columns
via the margin

Now you can use preceding variables and mixins with Preboot to make a visible
representation of the grid. To begin with, define some grid rows in HTML as follows:

<div class="container">
<div class="row">
 <div class="col-12"></div>
</div>
<div class="row">
 <div class="col-11"></div><div class="col-1"></div>
</div>
<div class="row">
 <div class="col-10"></div><div class="col-2"></div>
</div>
<div class="row">
 <div class="col-9"></div><div class="col-3"></div>
</div>
<div class="row">
 <div class="col-6"></div><div class="col-6"></div>
</div>
<div class="row">
 <div class="col-1"></div><div class="col-1"></div><div
 class="col-1"></div><div class="col-1"></div><div class="col-
 1"></div><div class="col-1"></div><div class="col-
 1"></div><div class="col-1"></div><div class="col-
 1"></div><div class="col-1"></div><div class="col-
 1"></div><div class="col-1"></div>
</div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[139]

The grid used here contains 12 columns and you can see the number of columns in
each row should sum up to 12 too.

Now you can write the Less code for the preceding grid, which makes use of
Preboot's mixins and variables. Again, you can split up your code into separated
files to keep things clear.

The project.less file contains the following Less code which imports all required
files into the project:

@import "../normalize.less";
@import "../basics.less";
#preboot { @import (reference) "preboot-master/less/preboot.less"; }
@import "variables.less";
@import "mixins.less";
@import "grid.less";
@import "styles.less";

The variables.less file contains the following Less code that defines the
project's variables:

@grid-columns: 12;
@grid-column-padding: 30px;
@grid-float-breakpoint: 768px;
@grid-width: 1200px;

The mixins.less file contains the mixins for the project:

.make-grid-classes(@number) when (@number>0) {

 .make-grid-classes(@number - 1);
 .col-@{number} {
 #preboot > .make-column(@number);
 }
}

Note the usage of the #preboot > .make-column(@number); namespace here.
The loop construct should now look familiar to you.

And the grid.less file contains the Less code, which defines the grid's classes:

.container {
max-width: @grid-width;
padding: 0 @grid-column-padding;
}
.row {
 #preboot > .make-row()
}
& { .make-grid-classes(12); }

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[140]

The preceding code will create the CSS classes for your grid. Note that the
.container class will be used to set the maximum width for the grid. It also sets
a padding, which is needed to correct the gutter around the grid. Each row has
a padding of half the size of @grid-column-padding. Between two rows, the
.containter class makes the gutter equal to @grid-column-padding, but now,
the left- and right-hand side of the grid only has a padding that is half the size of
@grid-column-padding. The .row class corrects this by adding a negative margin
of half the size of @grid-column-padding. Finally, the padding of the container
prevents this negative margin from putting the grid off the screen.

Please also notice the ampersand in the & { .make-grid-classes(12); }
statement. This ampersand (reference) guarantees that the inherited .make-row
mixin will be visible when you need it. The namespaced mixin is not visible in the
global scope. This problem may be fixed in later versions of Less.

And finally the styles.less file contains the Less code which defines the styles to
make the grid columns visible:

.row [class^="col-"]{
 background-color: purple;
 height: 40px;
 border: 2px solid white;
}

The compiled CSS from styles.less will only be used to make the grid
columns visible. As mentioned in Chapter 1, Improving Web Development with Less,
[class^="col-"] is a CSS selector that selects your grid's columns which have a
class starting with col-, your grid's columns. Each column gets a height (height),
background color (background-color), and border (border). Also, here, the
box-sizing: border-box; statement guarantees that the border width does not
influence the width of the columns.

You can see the final result by visiting http://localhost/prebootgridclasses.
html on your browser. The result will look like the following image:

Representation of Preboot's grid with 12 columns

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[141]

When you see the preceding representation of the grid, you may wonder where to
find the gutters. As mentioned earlier, the gutter will be constructed with a padding
of the columns. You can make this visible by adding some content in the columns.
So, try adding the following code into your HTML file:

<div class="row">
 <div class="col-6"><p style="background-color:yellow;">make the
 gutter visible</p></div>
 <div class="col-6"><p style="background-color:yellow;">make the
 gutter visible</p></div>
</div>

After adding the preceding code into your HTML file, the result will look like the
following image:

Preboot's grid with 12 columns; the content makes the gutters visible

In the preceding image you will see the gutters of the grid. Please also notice
that the .col-6 class only has gutters on each side, so the total content width
of a .col-6 will be 6 columns, including five gutters.

Using the grid mixins to build a semantic
layout
In the preceding section, you used Preboot's grid mixins to build grid classes. In the
final section of this chapter, you will use these mixins to build a semantic layout.

You can use the same example used earlier. Before you start, you should undo the
changes made in the examples with media queries. You don't need these media
queries here because the grid is responsive by default.

You can watch the result by visiting http://localhost/
semanticgrid.html, and you will find the Less files of this
example in the /less/semanticgrid/ folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[142]

In the current example layout, the container styles are applied to the body element.
Nowadays, there seems to be no reason to add an extra div container (wrapper).
All modern browsers handle the body as a normal block level element. If you prefer
to add an extra wrapper for some reason, please do so. A plausible reason to do so
would be, for instance, adding copyrights under your layout; of course, the body
doesn't allow you to add something after it. In both cases, this container holds the
grids' rows.

Open /less/semanticgrid/project.less and write the following Less code for the
container mentioned into it:

body {
 max-width: @basic-width;
 padding: 0 @grid-column-padding;
 margin: 0 auto;
}

Please notice that @basic-width in /less/semanticgrid/variables.less is set to
900 pixels to make it clear that the grid is responsive with a break point at 768 pixels.

In this semantic example, you will use a grid with only three columns, defined in
/less/semanticgrid/variables.less, using the following code:

/* grid */
@grid-columns: 3;
@grid-column-padding: 30px;
@grid-float-breakpoint: 768px;

In /less/semanticgrid/project.less, you can see that this example doesn't use
a namespace for Preboot. The latest version of Less, when this book was written,
doesn't support using namespace's variables in the global scope. In further releases,
you can expect #namespace > @variable to work, but it doesn't work as of now.
Using a namespace will make the setting of, for instance, @grid-columns inside the
namespace from the global scope complex or impossible.

Now, open /less/semanticgrid/header.less. In this file, you can remove the old
.centercontent class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[143]

Use the .make-row() mixin of Preboot to make the header tag act like a row and use
the .make-column(3) mixin call for h1 inside this header. The h1 element will have a
width of three columns now.

Do the same for /less/semanticgrid/content.less but use .make-column(2) for
the content and .make-column(1) for the sidebar here.

Again, you will see that in the mobile version, the navigation is under the content as
explained earlier. You can fix this using the same trick you have seen earlier in the
media queries example. In Chapter 6, Bootstrap3, WordPress, and Other Applications, you
will learn other ways to solve problems like this. For now, reverse the sidebar and the
content in your HTML code so that the sidebar is before the content. After this, you
should give the sidebar a float: right call, as shown in the following code:

@media (min-width: @grid-float-breakpoint) {
 float:right;
}

Finally, you have to change the footer. Please use .make-row() again for the footer
tag. The div elements inside the footer, which form the columns, will be styled with
.make-column(1). After doing this, you will see that the footer's columns are shown
next to each other without any white space between them. Remember that the gutter
of the grid is between the content of the columns and not between the columns itself.

To fix the problem mentioned earlier, apply background-color, border-radius, and
box-shadow on the p element inside the div element, as shown in the following code:

div {
.make-column(1);
p {
 min-height: @footer-height;
 background-color: @footer-dark-color;
 //margin: @footer-gutter (@footer-gutter / 2);
 .border-radius(15px);
 .box-shadow(10px 10px 10px, 70%);
 padding: 10px;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[144]

The preceding code will make the gutter visible, as seen earlier. The gutter of the
grid adds some white space between the columns. There will also be a gutter on the
left-hand side of the left column and on the right-hand side of the right column. This
will make the total visible width of the footer columns smaller than the header. You
can remove this gutter by setting the padding of div to 0 on these sides. Change the
padding on the middle column to give the three columns the same width again. This
can be done using the following code:

div {

 &:first-child {

 padding-left: 0;

 }

 &:nth-child(2) {

 padding-left: 15px;

 padding-right: 15px;

 }

 &:last-child {

 padding-right: 0;

 }

}

Visit http://localhost/semanticgrid.html to see the final result of the preceding
code. Resize your browser window to see that it is indeed responsive.

Extending your grids
In the preceding examples, you used one grid with one break point. Below the break
point, your rows simply stack. This seems to work in many cases, but sometimes, it
will be useful to have a grid for small screens as well. Imagine that you build a photo
gallery. On large screens, there will be four photos in a row. For smaller screens, the
photos shouldn't stack but show up with two instead of four in a row.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[145]

Again, you can solve this situation using grid classes or mixins for a more
semantic solution.

In both situations, you should also make your photos responsive. You can do this
by adding styles for your images. Setting max-width to 100% and height to auto
does the trick in most cases. The max-width variable prevents images from being
displayed wider than their original size and ensures that they get 100 percent of
their parent's width in other situations. On small screens, these images will get
100 percent width of the viewport.

To make your images responsive by default, you can add the following code to your
project's Less code:

img {
 display: block;
 height: auto;
 max-width: 100%;
}

If you prefer to make your image explicitly responsive by adding a class to each
image in your source, you can you use the following Less code to make such a class:

.responsive-image {
 display: block;
 height: auto;
 max-width: 100%;
}

Adding grid classes for the small grid
When using grid classes, you have to change the original .make-column mixin
from Preboot. This .make-columns() mixin sets the styles for a column and add a
media query. The media query in the .make-columns() mixin lets the columns float
horizontally for wider viewports. For the new small grid, you don't need a media
query, because the columns shouldn't be stacked at all.

To accomplish this, you can split the mixin into two new mixins, as shown in the
following code:

.make-columns(@columns) {
 // Prevent columns from collapsing when empty
 min-height: 1px;
 // Set inner padding as gutters instead of margin
 padding-left: @grid-column-padding;
 padding-right: @grid-column-padding;

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[146]

 // Proper box-model (padding doesn't add to width)
 .box-sizing(border-box);
}

.float-columns(@columns) {
 float: left;
 // Calculate width based on number of columns available
 width: percentage(@columns / @grid-columns);
}

After writing the preceding mixins, you should also create two mixins which do a
loop to make your grid classes.

The first mixin should look like the following code:

.make-grid-columns(@number) when (@number>0) {

 .make-grid-columns(@number - 1);

 .col-small-@{number},.col-large-@{number} {
 .make-columns(@number)
 }
}

The preceding mixins will be called from grid.less using the .make-grid-
columns(12); statement. These mixins will be compiled into the following code:

.col-small-1,

.col-large-1 {
 min-height: 1px;
 padding-left: 30px;
 padding-right: 30px;
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}
.col-small-2,
.col-large-2 {
 min-height: 1px;
 padding-left: 30px;
 padding-right: 30px;
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[147]

After doing this, you can easily see that the preceding code can be optimized to the
following code:

div[class~="col"] {
 // Prevent columns from collapsing when empty
 min-height: 1px;
 // Set inner padding as gutters instead of margin
 padding-left: @grid-column-padding;
 padding-right: @grid-column-padding;
 // Proper box-model (padding doesn't add to width)
 .box-sizing(border-box);
}

The second mixin will look like the following code:

.float-grid-columns(@number; @grid-size: large;) when
 (@number>0) {
 .float-grid-columns(@number - 1,@grid-size);
 .col-@{grid-size}-@{number} {
 .float-columns(@number)
 }
}

The preceding mixins will be called from grid.less using the following code:

.float-grid-columns(12,small);
@media (min-width: @grid-float-breakpoint) {
 .float-grid-columns(12);
}

The preceding code will create two sets of grid classes. The large grid classes will
only be applied when the media query is true. You will perhaps wonder why you
can't create these grid classes in one single loop. This is because of the last declaration
wins rule; you should define all your large grid classes after the small grid classes.
If, for instance, col-large-2 is defined before col-small-3, you can't use <div
class="col-small-3 col-large-2"> because col-small-3 overrules the styles
of col-large-2.

After creating your mixins as described earlier, you can write your HTML code
as follows:

<div class="row">
 <div class="col-small-6 col-large-3"></div>
 <div class="col-small-6 col-large-3"></div>
 <div class="col-small-6 col-large-3"></div>
 <div class="col-small-6 col-large-3"></div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Integrate Less in Your Own Projects

[148]

The preceding code will show four columns on your screen. These columns
are wider than 768 pixels. The code will also show two columns on smaller
screens. You can see an example of this by visiting: http://localhost/
prebootgridclassesextend.html.

Applying the small grid on your semantic
code
If you have chosen the semantic way to build your grids, the following example will
help you to add a small grid to the footer of the layout you built earlier. You can use
the files from /less/semanticgrid/content.less again in this example.

The layout has a break point at 768 pixels. Below this break point, on a small
screen, the footer should have three columns, and on big screens, the footer
columns should stack.

You can reuse the Preboot mixins you used earlier in this chapter to build a
responsive grid, to create the footer columns as described previously. First, split the
mixin into two new mixins: one mixin for floating and one for styling the columns, as
shown in the following code:

.less-make-column(@columns) {
 float: left;
 // Calculate width based on number of columns available
 width: percentage(@columns / @grid-columns);
}
.iscolumn()
{
 // Prevent columns from collapsing when empty
 min-height: 1px;
 // Set inner padding as gutters instead of margin
 padding-left: @grid-column-padding;
 padding-right: @grid-column-padding;
 // Proper box-model (padding doesn't add to width)
 .box-sizing(border-box);
}

After creating these mixins, you can use them together with media queries as follows:

 footer {
 .make-row();
 div {
 .iscolumn();
 .less-make-column(1);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[149]

 @media (min-width: @grid-float-breakpoint) {
 .less-make-column(3);
 }
 }
}

Summary
Unfortunately, you have arrived at the end of this chapter. Hopefully, you feel that
you are already able to start your own project with Less. In this chapter, you learned
how to use Less for your projects. You also learned how to use media queries and
grids to build responsive websites. You are ready to start using Less in your projects
now. Finally, you will have more time for your real design tasks. In the next chapter,
you will be introduced to other projects and frameworks using Less. You will also
learn how you can use these for your projects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap 3, WordPress, and
Other Applications

After reading the preceding chapters, you should have learned enough to build
your own projects with Less. You will write better CSS and achieve more than you
did before in the same time. You are definitely ready for the last step now. In the
last chapter of this book, you will learn how to use Less with other well-known
frameworks, applications, and tools. You will read about the web developer's tools
that are built with Less or have integrated Less in their workflow. These projects can
be used, customized, and extended with Less and will help you build better projects
with Less.

This chapter will cover the following topics:

• Bootstrap 3
• Semantic UI
• Building grids with Less
• WordPress and Less
• Alternative compilers to compile your Less code

Bootstrap 3
Bootstrap 3, formerly known as Twitter's Bootstrap, is a CSS and JavaScript
framework for building application frontends. The three in Bootstrap 3 refers
to the third version of this framework; wherever Bootstrap is written in this book,
it refers to this third version. The third version of Bootstrap has important changes
over the earlier versions of the framework. Bootstrap 3 is not compatible with the
earlier versions.

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap 3, WordPress, and Other Applications

[152]

Bootstrap 3 can be used to build great frontends. You can download the complete
framework, including CSS and JavaScript, and start using it right away. Bootstrap
also has a grid. The grid of Bootstrap is mobile-first by default and has 12 columns.
In fact, Bootstrap defines four grids: the extra-small grid up to 768 pixels (mobile
phones), the small grid between 768 and 992 pixels (tablets), the medium grid
between 992 and 1200 pixels (desktop), and finally, the large grid of 1200 pixels
and above for large desktops . In Chapter 5, Integrate Less in Your Own Projects, you
build a grid with Preboot's mixins; Bootstrap's grid works in a similar way.

The grid, all other CSS components, and JavaScript plugins are described and well
documented at http://getbootstrap.com/.

Bootstrap's default theme looks like the following screenshot:

Example of a layout built with Bootstrap 3

The time when all Bootstrap websites looked quite similar is far behind us now.
Bootstrap will give you all the freedom you need to create innovative designs.

There is much more to tell about Bootstrap, but for now, let's get back to Less.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[153]

Working with Bootstrap's Less files
All the CSS code of Bootstrap is written in Less. You can download Bootstrap's
Less files and recompile your own version of the CSS. The Less files can be used to
customize, extend, and reuse Bootstrap's code. In the following sections, you will
learn how to do this.

To download the Less files, follow the links at http://getbootstrap.com/
to Bootstrap's GitHub pages at https://github.com/twbs/bootstrap. On
this page, choose Download Zip on the right-hand side column.

Building a Bootstrap project with Grunt
After downloading the files mentioned earlier, you can build a Bootstrap project
with Grunt. Grunt is a JavaScript task runner; it can be used for the automation of
your processes. Grunt helps you when performing repetitive tasks such as minifying,
compiling, unit testing, and linting your code.

Grunt runs on node.js and uses npm, which you saw while installing the Less
compiler. Node.js is a standalone JavaScript interpreter built on Google's V8
JavaScript runtime, as used in Chrome. Node.js can be used for easily building fast,
scalable network applications.

When you unzip the files from the downloaded file, you will find Gruntfile.js
and package.json among others. The package.json file contains the metadata for
projects published as npm modules. The Gruntfile.js file is used to configure or
define tasks and load Grunt plugins. The Bootstrap Grunt configuration is a great
example to show you how to set up automation testing for projects containing HTML,
Less (CSS), and JavaScript. This book can't handle all of this; more information about
Grunt.js can be found in Grunt.js Cookbook available at http://www.packtpub.com/
grunt-js-cookbook/book. The parts that are interesting for you as a Less developer
are mentioned in the following sections.

In package.json file, you will find that Bootstrap compiles its Less files with grunt-
contrib-less. At the time of writing this book, the grunt-contrib-less plugin
compiles Less with less.js Version 1.7. In contrast to Recess (another JavaScript build
tool previously used by Bootstrap), grunt-contrib-less also supports source maps.

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap 3, WordPress, and Other Applications

[154]

Apart from grunt-contrib-less, Bootstrap also uses grunt-contrib-csslint to
check the compiled CSS for syntax errors. The grunt-contrib-csslint plugin also
helps improve browser compatibility, performance, maintainability, and accessibility.
The plugin's rules are based on the principles of object-oriented CSS (http://www.
slideshare.net/stubbornella/object-oriented-css). You can find more
information by visiting https://github.com/stubbornella/csslint/wiki/Rules.

Bootstrap makes heavy use of Less variables, which can be set by the customizer.

Whoever has studied the source of Gruntfile.js may very well also find a
reference to the BsLessdocParser Grunt task. This Grunt task is used to build
Bootstrap's customizer dynamically based on the Less variables used by Bootstrap.
Though the process of parsing Less variables to build, for instance, documentation
will be very interesting, this task is not discussed here further. You will read about
the customizer later in this chapter.

This section ends with the part of Gruntfile.js that does the Less compiling. The
following code from Gruntfile.js should give you an impression of how this code
will look:

 less: {
 compileCore: {
 options: {
 strictMath: true,
 sourceMap: true,
 outputSourceFiles: true,
 sourceMapURL: '<%= pkg.name %>.css.map',
 sourceMapFilename: 'dist/css/<%= pkg.name %>.css.map'
 },
 files: {
 'dist/css/<%= pkg.name %>.css': 'less/bootstrap.less'
 }
 }

Last but not least, let's have a look at the basic steps to run Grunt from the
command line and build Bootstrap. Grunt will be installed with npm. Npm
checks Bootstrap's package.json file and automatically installs the necessary
local dependencies listed there.

To build Bootstrap with Grunt, you will have to enter the following commands on
the command line:

> npm install -g grunt-cli

> cd /path/to/extracted/files/bootstrap

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[155]

After this, you can compile the CSS and JavaScript by running the following command:

> grunt dist

This will compile your files into the /dist directory. The > grunt test command
will also run the built-in tests.

Compiling your Less files
Although you can build Bootstrap with Grunt, you don't have to use Grunt. You will
find the Less files in a separate directory called /less inside the root /bootstrap
directory. The main project file is bootstrap.less; other files will be explained in
the next section. You can use bootstrap.less in the same way as you did in the
earlier chapters.

You can include bootstrap.less together with less.js into your HTML for the
purpose of testing as follows:

 <link rel="bootstrap/less/bootstrap.less" type="text/css"
href="less/styles.less" />
 <script type="text/javascript">less = { env: 'development' };</
script>
 <script src="less.js" type="text/javascript"></script>

Of course, you can compile this file server side too as follows:

lessc bootstrap.less > bootstrap.css

Dive into Bootstrap's Less files
Now it's time to look at Bootstrap's Less files in more detail. The /less directory
contains a long list of files. You will recognize some files by their names. You have
seen files such as variables.less, mixins.less, and normalize.less earlier.
Open bootstrap.less to see how the other files are organized. The comments
inside bootstrap.less tell you that the Less files are organized by functionality
as shown in the following code snippet:

// Core variables and mixins
// Reset
// Core CSS
// Components

Although Bootstrap is strongly CSS-based, some of the components don't work
without the related JavaScript plugins. The navbar component is an example of this.
Bootstrap's plugins require jQuery. You can't use the newest 2.x version of jQuery
because this version doesn't have support for Internet Explorer 8.

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap 3, WordPress, and Other Applications

[156]

To compile your own version of Bootstrap, you have to change the variables defined
in variables.less. In the preceding chapters, you learned that you don't have
to overwrite the original files and variables. When using the last declaration wins
and lazy loading rules, it will be easy to redeclare some variables. Redeclaration
of variables was discussed earlier in Chapter 2, Using Variables and Mixins.

Creating a custom button with Less
By default, Bootstrap defines seven different buttons, as shown in the following
screenshot:

The seven different button styles of Bootstrap 3

Please take a look at the following HTML structure of Bootstrap's buttons before you
start writing your Less code:

<!-- Standard button -->
<button type="button" class="btn btn-default">Default</button>

A button has two classes. Globally, the first .btn class only provides layout styles,
and the second .btn-default class adds the colors. In this example, you will only
change the colors, and the button's layout will be kept intact.

Open buttons.less in your text editor. In this file, you will find the following
Less code for the different buttons:

// Alternate buttons
// --
.btn-default {
 .button-variant(@btn-default-color; @btn-default-bg; @btn-default-
border);
}

The preceding code makes it clear that you can use the .button-variant() mixin to
create your customized buttons. For instance, to define a custom button, you can use
the following Less code:

// Customized colored button
// --
.btn-colored {
 .button-variant(blue;red;green);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[157]

In the preceding case, you want to extend Bootstrap with your customized button,
add your code to a new file, and call this file custom.less. Appending @import
custom.less to the list of components inside bootstrap.less will work well. The
disadvantage of doing this will be that you will have to change bootstrap.less
again when updating Bootstrap; so, alternatively, you could create a file such as
custombootstrap.less which contains the following code:

@import "bootstrap.less";
@import "custom.less";

The previous step extends Bootstrap with a custom button; alternatively, you could
also change the colors of the default button by redeclaring its variables. To do this,
create a new file, custombootstrap.less again, and add the following code into it:

@import "bootstrap.less";
//== Buttons
//
//## For each of Bootstrap's buttons, define text, background and
border color.
@btn-default-color: blue;
@btn-default-bg: red;
@btn-default-border: green;

In some situations, you will, for instance, need to use the button styles without
everything else of Bootstrap. In these situations, you can use the reference keyword
with the @import directive, as discussed earlier in Chapter 5, Integrate Less in Your
Own Projects.

You can use the following Less code to create a Bootstrap button for your project:

@import (reference) "bootstrap.less";
.btn:extend(.btn){};
.btn-colored {
 .button-variant(blue;red;green);
}

You can see the result of the preceding code by visiting http://localhost/index.
html in your browser.

Notice that depending on the version of less.js you use, you may find some
unexpected classes in the compiled output. Media queries or extended classes
sometimes break the referencing in older versions of less.js.

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap 3, WordPress, and Other Applications

[158]

Customizing Bootstrap's navbar with Less
An important component of Bootstrap is the navigation bar. The navigation bar
adds the main navigation to a website. It mostly contains a logo or brand name, a
searchbox, and navigation links. In this book, navbar refers to the navigation bar.
A typical Bootstrap navbar will look like the following screenshot:

Example of a Bootstrap navbar

Bootstrap's navbar is responsive by default. On small screen sizes, the preceding
navbar will look like the following screenshot:

A collapsed and opened Bootstrap navbar

In addition to the CSS, Bootstrap's responsive navbar requires the collapse JavaScript
plugin. This plugin should be included in your version of Bootstrap.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[159]

Now, try to change the colors of the default navbar as an example. To do this,
you must first open variables.less to find out which variables color the navbar
as follows:

//== Navbar
//
//##

// Basics of a navbar
@navbar-height: 50px;
@navbar-margin-bottom: @line-height-computed;
@navbar-border-radius: @border-radius-base;
@navbar-padding-horizontal: floor((@grid-gutter-width / 2));
@navbar-padding-vertical: ((@navbar-height - @line-height-
computed) / 2);
@navbar-collapse-max-height: 340px;

@navbar-default-color: #777;
@navbar-default-bg: #f8f8f8;
@navbar-default-border: darken(@navbar-default-bg, 6.5%);

// Navbar links
@navbar-default-link-color: #777;
@navbar-default-link-hover-color: #333;
@navbar-default-link-hover-bg: transparent;
@navbar-default-link-active-color: #555;
@navbar-default-link-active-bg: darken(@navbar-default-bg,
6.5%);
@navbar-default-link-disabled-color: #ccc;
@navbar-default-link-disabled-bg: transparent;

// Navbar brand label
@navbar-default-brand-color: @navbar-default-link-color;
@navbar-default-brand-hover-color: darken(@navbar-default-
brand-color, 10%);
@navbar-default-brand-hover-bg: transparent;

// Navbar toggle
@navbar-default-toggle-hover-bg: #ddd;
@navbar-default-toggle-icon-bar-bg: #888;
@navbar-default-toggle-border-color: #ddd;

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap 3, WordPress, and Other Applications

[160]

You have seen that it was easy to find these variables. The comments in the file are
a handy guide to find them. You will also see that the meaningful and descriptive
names for variables make sense, as learned in Chapter 2, Using Variables and Mixins.
On the other hand, you may be wondering why there are so many variables only for
the navbar. The navbar has many elements and different manifestations that need to
be defined with variables. As mentioned earlier, Bootstrap's navbar is responsive by
default; it collapses for smaller screens (or in fact, from the mobile-first point of view,
it becomes horizontal for larger screen sizes). So, styles must be defined for both the
collapsed and horizontal versions of the navbar. Colors for the navbar links and the
collapsed menu toggle button are also set in the preceding code.

Just like Bootstrap's buttons, the Bootstrap navbar is also built with two classes, as
shown in the following code snippet:

<nav class="navbar navbar-default" role="navigation"></nav>

In this case, the .navbar class provides layout styles, and the second .navbar-default
class adds the colors and other variations. The .navbar class also has a third class that
sets its type. There are four types of navbars: the default, fixed to top, fixed to bottom,
and static top.

The navbar classes can be found in navbar.less. The navbar doesn't have a mixin
to build the classes. The Less code provides classes for two alternate navbar styles:
.navbar-default and .navbar-inverse.

As there are no mixins to use, redeclaration of some of the navbar's variables will be
the best option to customize its look and feel. Optionally, you can copy the complete
.navbar-default class and use it for customization. Bootstrap intends to use only
one navbar per page, so additional style classes don't have added value.

For instance, now set the following:

@navbar-default-color: red;
@navbar-default-bg: blue;
@navbar-default-border: yellow;

You can declare these variables into customnavbar.less and also add @import
"bootstrap.less"; to this file. Now, you can compile customnavbar.less.

You can see the result of the preceding code by visiting http://localhost/
customnavbar.html in your browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[161]

Bootstrap classes and mixins
Skipping through the components, you will see that Bootstrap is a very complete
framework. After the compilation of the framework, you have all the classes you
need to build your responsive website. On the other hand, Bootstrap can also be
used as a library. You have already seen how to use only the buttons.

In utilities.less, you can find the following code:

.clearfix {
 .clearfix();
}

The preceding code makes the .clearfix class available for direct usage in your
HTML; on the other hand, you can still reuse the .clearfix() mixin. You can find
Bootstrap's mixins in mixins.less. This strict separation of mixins and classes allows
you to import mixins.less and apply these mixins into your own code under your
own class name(s), without actually creating an output of these classes.

The preceding import of the mixins.less file will allow you to use Bootstrap's
gradient mixins for your own projects, as shown in the following code snippet:

@import "bootstrap/mixins.less";
header {
 #gradient > .horizontal(red; blue);
}

The preceding code will compile into the following CSS code:

header {
 background-image: -webkit-linear-gradient(left, color-stop(#ff0000
0%), color-stop(#0000ff 100%));
 background-image: linear-gradient(to right, #ff0000 0%, #0000ff
100%);
 background-repeat: repeat-x;
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#f
fff0000', endColorstr='#ff0000ff', GradientType=1);
}

As you can see, the gradient mixins are namespaced. Please also visit
http://localhost/gradient.html to see how the background gradient
from the preceding example will look.

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap 3, WordPress, and Other Applications

[162]

Theming Bootstrap with Less
As Bootstrap's styles are built with Less, it will be easy to theme your own version of
Bootstrap. There are basically two ways to integrate your theme's Less code.

The first method compiles all code to a single CSS file. This method is recommended
in most cases because loading requires only one HTTP request.

To use this method, import your theme file into bootstrap.less with the @import
statement and recompile Bootstrap. Alternatively, create a new project file, for
instance, bootstraptheme.less, which includes both, as shown in the following
code snippet:

@import "bootstrap.less";
@import "theme.less";

This method overwrites Bootstrap's styles at the Less level, while the second method
does the same at the CSS level. In this second method, the theme's Less code will be
compiled in to separate CSS files, which will be loaded after Bootstrap's CSS.

Your HTML for client-side compiling will be as follows:

 <link rel="stylesheet/less" type="text/css" href="less/bootstrap/
bootstrap.less" />
 <link rel="stylesheet/less" type="text/css" href="less/yourtheme.
less" />
 <script type="text/javascript">less = { env: 'development' };</
script>
 <script src="less.js" type="text/javascript"></script>

Your HTML after server-side compiling will be as follows:

 <link type="text/css" rel="stylesheet" href="css/bootstrap.min.css"
/>
 <link type="text/css" rel="stylesheet" href="css/yourtheme.min.css"
/>

This second method requires an extra HTTP request when loading your page,
but on the other hand, it offers the opportunity to load Bootstrap's core from
CDN as follows:

 <link type="text/css" rel="stylesheet" href="//netdna.bootstrapcdn.
com/bootstrap/3.1.1/css/bootstrap.min.css" />
 <link type="text/css" rel="stylesheet" href="css/yourtheme.min.css"
/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[163]

The a11y theme for Bootstrap
A11y is a commonly used shorthand for (web) accessibility. Accessibility plays an
important role in modern web designs; nevertheless, many websites pay less attention
to it. The a11y theme for Bootstrap provides better accessibility with Bootstrap.

The a11y theme can be downloaded from https://github.com/bassjobsen/
bootstrap-a11y-theme. You only have to compile the Less file to use the theme.
Also, in this case, you can choose between integrating the Less code into your
Less code base or compiling a separate theme's CSS file. For more accessibility
improvements of Bootstrap, also take a look at https://github.com/paypal/
bootstrap-accessibility-plugin/. Notice that this plugin doesn't provide any
Less code, but only CSS.

Color schemes with 1pxdeep
1pxdeep helps you use relative visual weight and color schemes in your project.
Based on a seed color, 1pxdeep's scheme.less file generates a color pallet with
16 colors. Each color is also defined in a variable. The variables, such as @color1
or @color4c, can be used for the customization of your design. Every color variable
also defines a class with the same name, so @color1 in your Less code and .color1
in your HTML refer to the same color in your color scheme.

After implementing 1pxdeep in your project, changing the branding or color scheme
will be as simple as changing the seed color.

A typical Less project file using 1pxdeep and Bootstrap will look like the following
code snippet:

@import "scheme.less"; // color scheme
@import "bootstrap.less"; // bootstrap
@import "1pxdeep.less"; // 1pxdeep theme
@import "style.less"; // your own styles

The preceding code redeclares Bootstrap's variables, such as @brand-primary:
hsl(hue(#428bca),@sat,@l-factor);, and enables you to use 1pxdeep's variables
such as @color3 in the style.less file, as shown in the following code snippet:

header {
 background-color: @color3;
 h1 {
 color: @color3a;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap 3, WordPress, and Other Applications

[164]

1pxdeep's CSS classes can also be used directly in your HTML code as follows:

<button class="btn btn-default color1">Color 1</button>

On 1pxdeep's website, you can test different seed colors to get an impression of how
they look. Please visit http://rriepe.github.io/1pxdeep/ and be surprised.

Using Bootstrap's customizer to build your
own version
Whoever wants to start with a customized version of Bootstrap from scratch
can also use Bootstrap's customizer. You will find the customizer by visiting
http://getbootstrap.com/customize/. The customizer allows you to choose
which Less files should be used. It will also be possible to set all Bootstrap's Less
variables. The list can also be used as a reference for Bootstrap's variables when
compiling a version yourself. Notice that the files that can be downloaded when
using the customizer don't contain any Less files, so files from the Bootstrap
customizer are not suitable for further customization with Less.

Semantic UI – another Less framework
Semantic can be used to build frontends too. Just like Bootstrap, it contains
CSS components and modules. Components have been split up in to elements,
collections, and views. Modules require not only CSS, but also JavaScript.

Semantic's name already makes clear that it pays attention to the semantics of
HTML5. It is also tag-agnostic, which means you can use any HTML tags with
UI elements.

In the following code, you will find a short HTML example that shows how Semantic
is intended to be used:

<main class="ui three column grid">
 <aside class="column">1</aside>
 <section class="column">2</section>
 <section class="column">3</section>
</main>

Also, Semantic has been built with Less. The complete source, including the Less files,
can be downloaded from https://github.com/semantic-org/semantic-ui/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[165]

The way Semantic handles Less differs from Bootstrap and most of the examples you
have seen earlier in this book. The Semantic source will also be built with Grunt, as
described in the preceding Bootstrap sections. On the contrary, Semantic does not
define variables and also doesn't define a master file that imports and connects the
different Less files. The Semantic Less code is split up in to different modules in which
most settings are hardcoded.

The different ways of handling Less by Semantic also means that when your projects
use the framework in its entirety, you will always have to run the complete Grunt
task after changing or extending the Less code. On the other hand, it will be very easy
to use single Semantic components or modules in your projects. The components and
modules do not depend on each other or global variables.

Please visit http://localhost/semanticui.html from the example files to see how
this works. You will see that you can use the grid or buttons by including only the
Less file. Also notice that if your buttons use icons (Semantic includes a complete port
of Font Awesome designed by Dave Gandy for its standard icon set), you should
also include the icon.less file.

Automatic prefixing of vendor-specific rules
When building Semantic with Grunt, the tasks first compile the Less files
to single CSS files. After this task, the next task runs grunt-autoprefixer.
The grunt-autoprefixer plugin parses Less or CSS and adds vendor-prefixed
CSS properties using the Can I Use... database (http://caniuse.com/). The
Less files in the /build directory are also prefixed this way. You can find more
information on grunt-autoprefixer by visiting https://github.com/nDmitry/
grunt-autoprefixer. The final tasks will bundle the CSS and JavaScript files in a
single file and minify them.

Automatic prefixing will be very interesting for your future projects, because
it enables you to write your Less code with single-line declarations only. Study
Semantic's Grunt.js to find out how this works. For now, running task and
automatic prefixing is out of the scope of this book. Notice that if you use single
Less files from Semantic for your project, you will have to use the files from the
/build directory instead of the /source directory. The Less files in the /build
directory are prefixed while those in the /source directory are not.

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap 3, WordPress, and Other Applications

[166]

Other frameworks to build your grid with
Less
In the preceding section, you learned how to use Bootstrap and Semantic UI to build
complete frontends. In practice for many projects, only a grid will be enough to start.
You have seen that Semantic's grid can be compiled easily as a single component.
Also, Bootstrap's grid can be compiled as a single component using the following
code snippet:

// Core variables and mixins
@import "variables.less";
@import "mixins.less";
// Reset
@import "normalize.less";
@import "grid.less";

Alternatively, you could also use another grid system. Some of them are discussed in
brief in the following sections.

Using the Golden Grid System to build your
grids
The Golden Grid System (GGS) splits the screen into 18 even columns. The
leftmost and rightmost columns are used as the outer margins of the grid; this
leaves 16 columns for your design. More details about this grid system can be
found at http://goldengridsystem.com/.

GGS comes with a Less file to compile the required CSS to build the grid.

The Frameless grid system adapts column by column,
not pixel by pixel.

The Frameless grid system, built by the same author who built GGS, is not fluid; the
grid adds columns when a breakpoint has been reached. Notice that Bootstrap's grids
work the same way. Frameless comes with a Less template that can be compiled to
use the grid. This template contains a small CSS reset, some consistency fixes, as well
as some basic customizable variables and functions for starting off a Frameless grid.
More information about Frameless grids can be found at http://framelessgrid.
com/. Frameless' documentation is sparse; however, you can find the source of
Frameless' home page on GitHub. This will give you an impression of how to use
it with Less.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[167]

The Semantic Grid System
The Semantic Grid System is very basic and effective. After setting the column
and gutter widths, choose the number of columns and switch between pixels and
percentages; you will have a layout without any .grid_x classes in your markup.
The Semantic Grid System is also responsive. It also supports nesting and push
and pull, which allows you to apply left and right indents to your columns.

Defining a fluid layout with Less will be as simple as compiling, as shown in the
following code snippet:

@import 'grid.less';
@columns: 12;
@column-width: 60;
@gutter-width: 20;

@total-width: 100%; // Switch from pixels to percentages
article {
 .column(9);
}
section {
 .column(3);
}

Further information about the Semantic Grid System can be found at
http://semantic.gs/.

WordPress and Less
Nowadays, WordPress is not only used for weblogs; it can also be used as a content
management system to build a website.

The WordPress system, written in PHP, has been split up into the core system,
plugins, and themes. Plugins add additional functionalities to the system and
themes handle the look and feel of a website built with WordPress. Plugins work
independent of each other. Plugins are also independent of the theme, and the theme
mostly does not depend on plugins either. WordPress themes define the global CSS
for a website, but every plugin can also add its own CSS code.

WordPress theme developers can use Less to compile the CSS of themes and plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap 3, WordPress, and Other Applications

[168]

Using the Roots theme with Less
Roots is a WordPress starters theme. You can use Roots to build your own theme.
Roots is based on HTML5 Boilerplate (http://html5boilerplate.com/) and
Bootstrap. Please also visit the Roots theme website at http://roots.io/. Also,
Roots can be completely built with Grunt. More information about how to use Grunt
for WordPress development can be found at http://roots.io/using-grunt-for-
wordpress-theme-development/.

After downloading Roots, the Less files can be found in the assets/less/ directory.
These files include Bootstrap's Less files, as described earlier. The assets/less/app.
less file imports the main Bootstrap Less file, bootstrap.less.

Now, you can edit app.less to customize your theme. You will have to rebuild
Roots after your changes.

Roots' documents describe editing Bootstrap's variables.less file as the easiest
way to customize a website built with Roots. More information can be found at
http://roots.io/modifying-bootstrap-in-roots/.

JBST with a built-in Less compiler
JBST is also a WordPress starters theme. JBST is intended to be used with so-called
child themes. More information about WordPress child themes can be found at
https://codex.wordpress.org/Child_Themes.

After installing JBST, you will find a Less compiler under Appearance in your
Dashboard, as shown in the following screenshot:

JBST's built-in Less Compiler in the WordPress Dashboard

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[169]

The built-in Less compiler can be used to fully customize your website with Less.
Bootstrap also forms the skeleton of JBST, and the default settings are gathered
from the a11y bootstrap theme mentioned earlier.

JBST's Less compiler can be used in different ways.

First, the compiler accepts any custom written Less (and CSS) code. For instance, to
change the color of the h1 elements, you should simply edit and recompile the code
as follows:

h1 {color: red;}

Second, you can edit Bootstrap's variables and (re)use Bootstrap's mixins. So, to
set the background color of the navbar and add a custom button, you can use the
following code in the Less compiler:

@navbar-default-bg: blue;
.btn-colored {
 .button-variant(blue;red;green);
}

Third, you can set JBST's built-in Less variables, for instance, as follows:

@footer_bg_color: black;

Fourth and last, JBST has its own set of mixins. To set a custom font, you can edit
as follows:

.include-custom-font(@family: arial,@font-path, @path: @custom-font-
dir, @weight: normal, @style: normal);

In the preceding code, the parameters are used to set the font name (@family) and
the path to the font files (@path/@font-path). The @weight and @style parameters
set the font's properties. For more information, visit https://github.com/
bassjobsen/Boilerplate-JBST-Child-Theme.

More Less code can also be added in a special file (wpless2css/wpless2css.less or
less/custom.less); these files will also give you the option to add, for instance, a
library of prebuilt mixins, such as the ones discussed in Chapter 4, Avoid Reinventing
the Wheel. After adding the library via this file, the mixins can also be used with the
built-in compiler.

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap 3, WordPress, and Other Applications

[170]

The Semantic UI WordPress theme
Semantic UI, as discussed earlier, offers its own WordPress plugin. The plugin can
be found on GitHub at https://github.com/ProjectCleverWeb/Semantic-UI-
WordPress. After installing and activating this theme, you can use your website
directly with Semantic UI. With the default setting, your website will look like the
following screenshot:

Website built with Semantic UI WordPress theme

WordPress plugins and Less
As discussed earlier, WordPress plugins have their own CSS. This CSS will add to
the page as a normal style sheet as follows:

<link rel='stylesheet' id='plugin-name' href='//domain/wp-content/
plugin-name/plugin-name.css?ver=2.1.2' type='text/css' media='all' />

Unless a plugin provides Less files for their CSS, it will not be easy to manage its
styles with Less.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[171]

Theme WooCommerce with Less
WooCommerce is a popular e-commerce plugin for WordPress. With
WooCommerce, you can build a web shop in a trice. You can theme your
WooCommerce web shop with Less, as documented at http://docs.woothemes.
com/document/css-structure/.

WooCommerce's Less file should be compiled into CSS and used as described
earlier. To create a single CSS file for all your style sheets with Less, you can consider
importing woocommerce.less into your project's master Less file and disable the
default styling with define('WOOCOMMERCE_USE_CSS', false); in your theme's
functions.php file.

The WP Less to CSS plugin
The WP Less to CSS plugin, which can be found by visiting http://wordpress.
org/plugins/wp-less-to-css/, offers the possibility to style your WordPress
website with Less. As seen earlier, you can enter your Less code with the built-in
compiler of JBST. This code will be compiled into the website's CSS. This plugin
compiles Less with the PHP Less compiler, Less.php.

Alternative compilers for compiling your
Less code
With the growing popularity of Less, the Less compiler has been ported to other
languages as well. These ports can be used to compile Less with native language
calls. Please keep in mind that these ports will usually lag the official JavaScript
implementation, so you may find they are missing recent Less features. You may
also realize, as mentioned earlier in Chapter 3, Nested Rules, Operations, and Built-in
Functions, that these compilers are not able to compile native JavaScript expressions
within backticks.

The Less.php compiler
This PHP port of the official Less processor can be download at http://lessphp.
gpeasy.com/. You have seen an example of its usage already; the WP Less to CSS
plugin has been built with it. Less.php also implements caching for faster compiling.

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap 3, WordPress, and Other Applications

[172]

Although Less.php offers the possibility of creating CSS dynamically, you still
should precompile your CSS for production in most cases. WordPress is also written
in PHP, so in the case of the WordPress plugin, Less can be compiled without using
system calls.

In the following code, you will find a short example that will show you how to
compile, customize, and use Bootstrap on a website written in PHP:

<?php
require 'less.php/Cache.php';
Less_Cache::$cache_dir = '/var/www/mysite/writable_folder';
$files = array();
$files['/var/www/mysite/bootstrap/bootstrap.less'] = '/mysite/
bootstrap/';
$files['/var/www/mysite/custom/my.less'] = '/mysite/custom/';
$css_file_name = Less_Cache::Get($files);
echo '<link rel="stylesheet" type="text/css" href="/mysite/writable_
folder/'.$css_file_name.'">';

The lessphp compiler available at http://leafo.net/lessphp/ is an alternative
PHP Less compiler.

The .less compiler for .NET apps
The .less compiler is a complete port of the JavaScript Less library for the .NET
platform. If you want to statically compile your files, you can use the included
dotless.Compiler.exe compiler. You can use .less for your web page by adding
a new HTTP handler to your Web.Config file as follows:

<add type="dotless.Core.LessCssHttpHandler,dotless.Core"
validate="false" path="*.Less" verb="*" />

List of tools to develop Less
On the Less website (http://lesscss.org/usage/), you will find many other
libraries, tools, and frameworks to develop Less.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[173]

Summary
In this chapter, you learned how to use Less with Bootstrap and Semantic UI and also
got introduced to other grids and frameworks built with Less. You have seen how to
use Less with WordPress, and finally, you saw how to use alternative compilers for
your project.

This is also the last chapter of this book. In this book, you learned how to use Less for
your projects. You saw how variables, mixins, and built-in functions can help you
reuse your code. With Less, you can nest your style rules, which make your code more
intuitive and readable. After reading this book, you know you don't have to write
all the code yourself, but you can use prebuilt mixins written by others. Finally, you
obtained knowledge on how to start projects from scratch with Less and integrate
Less with WordPress, Bootstrap, and other tools. Now, you are really ready to start
developing Less. Congratulations! You have enabled yourself to work better and faster
using Less for your projects and will save more time for your real design tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
1pxdeep 163
3L library

about 105
URL 100
using, of prebuilt mixins 105

@arguments variable 58
.box-shadow() mixin 105
.button-variant() mixin 156
.clearfix() mixin 161
.columns() mixin 102
!important keyword 11, 65, 66
@import directive 25
@import rule

using 120
@import statement 42
@keyframes 27
.less compiler

for .NET apps 172
#lessnamespace namespace 74, 75
.make-column-offset(n) mixin 138
.make-columns() mixin 133
.make-row() mixin 138
@rest variable 59
.seo-helper() mixin 106
& symbol 77-80
.visuallyhidden() mixin 106

A
a11y theme

about 163
URL, for downloading 163

alternative compilers, for Less code
about 171

less compiler, for .NET apps 172
lessphp compiler 171

alternative grids 136
anchors 68
animations

about 27
example 30

argument matching
used, for constructing loops 64, 65

arithmetic operations 76

B
background-image property 56
background gradients

about 93, 94
creating 25, 26
unused code 94

background mixins
parameters 57

basic mixins 52
behavior modification methods, mixin

argument matching 62
switches 61

Bootstrap
about 109, 132
theming, with Less 162

Bootstrap 3 151
Bootstrap project

building, with Grunt 153-155
border-radius

about 21
rounded corners, building with 21-24

box-shadow mixin 90, 104
box-sizing property 31-33

www.it-ebooks.info

http://www.it-ebooks.info/

[176]

built-in functions
about 81
color functions 85, 86
color manipulation 87
JavaScript 82
list functions 82-84
type functions 89

C
calc() function 126
CamelCase 44
Can I Use... database

URL 165
Can I Use... website

about 94
URL 94

cascade 10
cascade, in CSS

global rules 11
CCS3 10
Chrome's developer tools 94, 95
class 70-73, 161
clean-css command-line compiler 36, 40
clearfix() mixin 78, 132
ClearLess

about 107, 108
URL 100

client-side compiling 34
code

debugging, in Less 18, 19
testing 96
testing, with tdcss.js 99, 100

CodeKIT 36
color blending functions

average() 88
difference() 88
exclusion() 88
hardlight() 88
multiply() 88
negation() 88
overlay() 88
screen() 88
softlight() 88

color channels 85
color functions

about 85

contrast() 86, 87
darken() 86, 87
desaturate() 87
fade() 87
fadein() 87
fadeout() 87
grayscale() 87
lighten() 86, 87
mix() 87
saturate() 87
spin() 87
using 86, 87

color manipulation 87
color palettes 86
color schemes

with 1pxdeep 163
Comma Separated Value (CSV) 81
comments

about 39, 40
nested comments 40
special comments 40

compiling 14
complex mixin

for linear gradient backgrounds 55
contrast() function 87
cross-browser issues

preventing, with CSS resets 24, 25
Crunch! 36
CSS

cascade 11
importing, into LESS 120
inheritance 11
specificity 11

CSS2Less
URL 124

CSS3
about 9
used, for styling HTML 10
vendor-specific rules 21

CSS3 techniques 102
CSS code

converting, to LESS code 123, 124
CSS float property 129, 130
CSS grids 129
CSS isolation 136
css keyword 121

www.it-ebooks.info

http://www.it-ebooks.info/

[177]

CSS Lint
URL 96

CSS media queries 124
CSS Multi-column Layout Module

about 103
URL 103

CSS precedence 122
CSS preprocessor 120
CSS resets

about 24, 95
used, for preventing cross-browser

issues 24, 25
CSS selectors

URL, for complete list 10
used, for styling HTML 10

CSS specificity
about 70
working 12, 13

CSS sprite images 107
csv list 54
custom button

creating, Less used 156, 157
customizer

used, for building version 164

D
darken() function 86
default() function 89
default values, parametric mixins 52
difference() function 88
DOM structure 69
Do Not Repeat yourself

(DRY principle) 9, 39

E
Eclipse 36
es5-shim

URL 16
extended selector list 79
Extract() function 82

F
files

organizing 42, 43, 123

Firebug CSS usage add-on
about 96
URL, for downloading 96

Flexbox Layout 13
flexible boxes

used, for building layouts 13
Font Awesome

URL 83
URL, for examples 112
using 83

Frameless grid
URL 166

Frameless grid system 166
frameworks

used, for building grid with Less 166

G
GIMP 88
Glyphicons 112
Golden Grid System (GGS)

about 166
URL 137
used, for building grid 166

Graphical User Interface (GUI)
about 36
CodeKIT 36
Crunch! 36
SimpLESS 36
WinLess 36

grid-based layouts 129
grid classes

adding, for small grid 145-148
layouts, building with 133, 134

grid.less file 139
grid.make-column(n) mixin 138
grid mixins

used, for building semantic layout 141-144
grid responsive

making 130, 131
grids

about 152
building, framework used 166
building, Golden Grid System (GGS)

used 166
defining 152
extending 144, 145

www.it-ebooks.info

http://www.it-ebooks.info/

[178]

semantic strategy, using 132, 133
small grid, applying on semantic code 148
using, in designs 129
using, in work flow 129

Grunt
used, for building Bootstrap project 153-155

grunt-contrib-csslint plugin 154
grunt-contrib-less plugin 153
Gruntfile.js file 153, 154
Grunt, for WordPress development

URL 168
Grunt.js

URL 153
guarded mixins 62-64
guard expressions 81
guards

about 63
used, for constructing loops 64, 65

H
HTML

styling, CSS3 used 10
styling, CSS selectors used 10

HTML5 Boilerplate
about 105
URL 168

HTML debugging 106
hyphenated names 44

I
iconic fonts

using 111, 112
inline keyword 121
inline styles 11

J
JavaScript functions 82
JBST

about 168
with built-in Less compiler 168, 169

jQuery 155
jQuery.animate() function 31

K
keyframes 30

L
layouts

building, with flexible boxes 13
building, with grid classes 133, 134
fluid design, applying 125-127
performing, in Less 20
testing, on mobile phone 128

lazy loading 48
length() function 82
Less

about 9
and WordPress 167
and WordPress plugins 170
code, debugging 18, 19
code example 19
compiling 14
CSS, importing into 120
framework, used for building grid 166
layout, performing 20
navigation bar, customizing with 158-160
starting with 15, 16
URL, for downloading 15
URL, for functions 81
used, for creating custom button 156, 157
used, for integrating techniques into

project 110
used, for theming Bootstrap 162

Less code
about 126
CSS code, converting to 123, 124
used, for integrating Meteocons into

project 112-115
Less compilers 82
Less elements

single-line declarations, using for
vendor-specific rules 101-103

URL 100
Less files

about 155
compiling 155

www.it-ebooks.info

http://www.it-ebooks.info/

[179]

URL, for downloading 153
working with 153

Less Framework 4
URL 137

Less Hat
about 104, 105
URL 100

Lessify
about 123
URL 123

less.js file 17, 120
less keyword 121
Less.php compiler

about 171
URL 172

lighten() function 48, 86
linear gradient backgrounds,

complex mixin 55
Lint Grunt plugin

about 96
URL, for info 96

list functions
about 82
Extract() 82
length() 82

loops
constructing, argument matching used 64
constructing, guards used 64, 65

Lots of Love for Less. See 3L library
luma value 86

M
Markdown 97
max() function 82
media queries 16, 125, 157
method overloading 54
minimizers 40
mixin

about 28, 39, 50, 51, 70-72, 161
basic mixins 52
behavior, modifying 61
calling 53, 54
defining 56
multiple parameters 54
naming 53, 54
parametric mixins 52

requisites 56
return value 60
variables 28

mixin() function 51
mixin libraries

URL, for comprehensive list 100
mixins.less file 139
mobile

coding, ways 128
mobile phone

layouts, testing on 128
Modernizr

about 16, 107
URL 16

multiple keyword 122

N
namespaces 74, 75
navigating structure 67
navigation 73
navigation bar

about 158
customizing, with Less 158-160

nested comments 40
nested grids

building 135
nested rules

about 68, 69
classes 70-73
mixins 70-72
namespaces 74, 75
variables 73

nesting 51
Node.js 15, 153
npm 35, 97, 153

O
operations

on colors 76
on numbers 76
on variables 76

order precedence 76

P
package.json file 153

www.it-ebooks.info

http://www.it-ebooks.info/

[180]

parametric mixins
about 52
default values 52

Photoshop 88
PHPStorm 36
Preboot

about 109
grid system, using 137-141
URL 100
using 110

prebuilt mixins 100
project

building, with responsive grid 137
migrating 122

project.less file 139
project migration

about 122
CSS code, converting to LESS code 123, 124
files, organizing 123

property merging 81
pseudo classes 12, 78
pseudo elements 12

R
Recess 153
recursion 65
reference keyword 120
relative visual weight 163
responsive grid

project, building with 137
Retina 116
Retina.js 116
return value, mixin 60
Roots documents

URL, for info 168
Roots theme

about 168
URL 168

rotation
example 29

rounded corners
building, with border-radius 21-24

S
screen readers 71

search engine optimization. See SEO
selectors 10, 68
semantic code

small grid, applying on 148
Semantic Grid System 167
semantic layout

building, grid mixins used 141-144
semantic naming 44
Semantic UI

about 164, 170
automatic prefixing, of vendor-specific

rules 165
URL 164
URL, for working 165

SEO 106
separator 54
server side compiling

about 35
CSS, compressing 35
CSS, minimizing 35

SimpLESS 36
single-line declarations

using, for vendor-specific rules with Less
Elements 101-103

special comments 40
special variables

@arguments 58
@rest 59

specificity 10
SpriteMe

about 107
URL 107

Stackoverflow.com
URL 96

strict-math option 50
string function 84
string interpolation 49, 126
StyleDocco

about 97
installation command 97
used, for building style guide 97, 98

styledocco command 98
style guide

about 97, 120
building, with StyleDocco 97, 98

www.it-ebooks.info

http://www.it-ebooks.info/

[181]

T
tdcss.js framework

about 99
code, testing with 99, 100

Test driven development (TDD) 96
tools, for Less development

URL 172
transformations

about 28
rotating 28
scaling 28
translating 28

transitions
about 27
example 28

transition-timing-function property 28
Twitter's Bootstrap. See Bootstrap
type functions

about 89
iscolor() 89
isem() 89
iskeyword() 89
isnumber() 89
ispercentage() 89
ispixel() 89
isstring() 89
isunit() 89
isurl() 89

U
unlocking 61
unused code, background gradients

about 94
Chrome's developer tools 94, 95
Firebug CSS usage add-on 96

V
values

escaping 49, 50

variables
about 39, 41, 73
files, organizing 42, 43
hyphenated names 44
last declaration, winning 46
naming 43, 44
organizing 45, 46
semantic naming 44
using 44, 45

variables.less file 139
vendor-specific rules, CSS 21
version

building, customizer used 164

W
W3C specifications 11, 104
watch function

about 17
used, for automatic reloading 17

Web Essentials 36
WinLess 36
WooCommerce

about 171
with Less 171

WordPress
about 167
and Less 167

WordPress plugins
and Less 170

WP Less to CSS plugin 171

Y
YUI CSS Compressor 36

Z
Zen Grids

URL 136
ZURB Foundation 132

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Less Web Development Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web Flow 2 Web
Development
ISBN: 978-1-84719-542-5 Paperback: 200 pages

Master Spring's well-designed web frameworks to
develop powerful web applications

1. Design, develop, and test your web applications
using the Spring Web Flow 2 framework.

2. Enhance your web applications with
progressive AJAX, Spring security integration,
and Spring Faces.

3. Stay up-to-date with the latest version of Spring
Web Flow.

4. Walk through the creation of a bug tracker web
application with clear explanations.

Instant LESS CSS Preprocessor
How-to
ISBN: 978-1-78216-376-3 Paperback: 80 pages

Practical, hands-on recipes to write more efficient
CSS, with the help of the LESS CSS Preprocessor
library

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Use mixins, functions, and variables to
dynamically auto-generate styles, based on
minimal existing values.

3. Use the power of LESS to produce style sheets
dynamically, or incorporate precompiled
versions into your code.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Web Development with Jade
ISBN: 978-1-78328-635-5 Paperback: 80 pages

Utilize the advanced features of Jade to create
dynamic web pages and significantly decrease
development time

1. Make your templates clean, beautiful, and
reusable.

2. Use Jade best practices right from the start.

3. Successfully automate redundant markup.

Node Web Development
Second Edition
ISBN: 978-1-78216-330-5 Paperback: 248 pages

A practical introduction to Node.js, an exciting
server-side JavaScript web development stack

1. Learn about server-side JavaScript with Node.js
and Node modules.

2. Website development both with and without
the Connect/Express web application
framework.

3. Developing both HTTP server and client
applications.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Improving Web Development with Less
	Using CSS3 for styling your HTML
	Using CSS Selectors to style your HTML
	Specificity, Inheritance, and Cascade in CSS
	How CSS specificity works

	Building your layouts with flexible boxes

	Compiling Less
	Getting started with Less
	Using the watch function for automatic reloading
	Debugging your code
	Example code used in this book

	Your first layout in Less
	Vendor-specific rules
	Build rounded corners with border-radius

	Preventing cross-browser issues with CSS resets
	Creating background gradients

	CSS transitions, transformations, and animations
	Box-sizing
	Server-side compiling
	Compressing and minimizing your CSS
	Graphical user interfaces

	Summary

	Chapter 2: Using Variables and Mixins
	Comments
	Nested comments
	Special comments

	Variables
	Organizing your files
	Naming your variables
	Using a variable
	Organizing variables
	The last declaration wins
	Variable declaration is not static
	Lazy loading

	Escaping values
	Mixins
	Basic mixins
	Parametric mixins
	Default values

	Naming and calling
	Multiple parameters
	More complex mixins for linear gradient backgrounds
	Special variables – @arguments and @rest
	Return values
	Changing the behavior of a mixin
	Switches
	Argument matching
	Guarded mixins
	Using guards and argument matching to construct loops

	The !important keyword

	Summary

	Chapter 3: Nested Rules, Operations, and Built-in Functions
	The navigation structure
	Nested rules
	Mixins and classes
	Variables
	Classes and namespaces

	Operating on numbers, colors, and variables
	The & symbol
	Property merging
	Built-in functions
	JavaScript
	List functions
	Using color functions
	The darken() and lighten() functions
	Color manipulation
	Color operations

	Color blending with Less
	Type functions

	The box-shadow mixin
	Summary

	Chapter 4: Avoid Reinventing the Wheel
	Revisiting background gradients
	Unused code
	Chrome's developer tools
	Firebug CSS usage add-on

	Testing your code
	Understanding TDD
	All about style guides
	Building a style guide with StyleDocco
	Testing your code with tdcss.js

	Prebuilt mixins
	Using single-line declarations for vendor-specific rules with Less Elements
	Less Hat – a comprehensive library of mixins
	Using the 3L library of prebuilt mixins
	SEO and HTML debugging

	ClearLess – another library of prebuilt mixins
	Using Preboot's prebuilt mixins for your project

	Integrating other techniques into your projects using Less
	Using iconic fonts
	Retina.js

	Summary

	Chapter 5: Integrate Less in Your
own Projects
	Importing CSS into Less
	Using the @import rule

	Migrating your project
	Organizing your files
	Converting CSS code to Less code

	Media queries and responsive design
	Making your layout fluid
	Testing your layouts on a mobile phone
	Coding first for mobile

	Using grids in your designs and work flow
	The role of CSS float in grids
	Making your grid responsive
	The role of the clearfix

	Using a more semantic strategy
	Building your layouts with grid classes
	Building nested grids
	Alternative grids

	Building your project with a responsive grid
	Using Preboot's grid system

	Using the grid mixins to build a semantic layout
	Extending your grids
	Adding grid classes for the small grid
	Applying the small grid on your semantic code

	Summary

	Chapter 6: Bootstrap 3, WordPress, and Other Applications
	Bootstrap 3
	Working with Bootstrap's Less files
	Building a Bootstrap project with Grunt
	Compiling your Less files
	Dive into Bootstrap's Less files
	Creating a custom button with Less
	Customizing Bootstrap's navbar with Less
	Bootstrap classes and mixins
	Theming Bootstrap with Less
	The a11y theme for Bootstrap
	Color schemes with 1pxdeep

	Using Bootstrap's customizer to build your own version

	Semantic UI – another Less framework
	Automatic prefixing of vendor-specific rules

	Other frameworks to build your grid with Less
	Using the Golden Grid System to build your grids
	The Semantic Grid System

	WordPress and Less
	Using the Roots theme with Less
	JBST with built-in Less compiler
	The Semantic UI WordPress theme
	WordPress plugins and Less
	Theme WooCommerce with Less
	The WP Less to CSS plugin

	Alternative compilers for compiling your Less code
	The Less.php compiler
	The .less compiler for .NET apps
	List of tools to develop Less

	Summary

	Index

